Crystal R&D(IHEP) for direct DM Search

Changgen Yang Institute of High Energy Physics, CAS 2011/3/24

The First Darkmatter Direct Search Detector (Crystal)

2-6 keV

Under Ground Dark Matter Search Experiment

Experiment	Target	Туре	Status	Site	Nation
ANAIS	Nal	annual modulation	construction	Canfranc	Spain
DAMA/NaI	NaI	annual modulation	concluded	LNGS	INFN-ITALY
DAMA/LIBRA	NaI	annual modulation	running	LNGS	INFN-ITALY
DAMA/1 ton	NaI	annual modulation	R&D	LNGS	INFN-ITALY
NAIAD	NaI	PSD	concluded	Boulby	UK
HDMS	Ge	ionization	concluded	LNGS	INFN-ITALY
KIMS	CsI	PSD	R&D	Y2L	Korea
Caf ₂ -Kamioka	CaF ₂	PSD	running	Kamioka	Japan
DAMA/Lxe	LXe	PSD	running	LNGS	INFN-ITALY
WARP	LAr	2 phase	running	LNGS	INFN-ITALY
XENON 10	LXe	2 phase	running	LNGS	INFN-ITALY
Zeplin II	LXe	2 phase	running	Boulby	UK
Zeplin III	LXe	2 phase	installation	Boulby	UK
ArDM	LAr	2 phase	R&D	Canfranc	Spain
LUX	LXe	2 phase	R&D	Dusel	USA
CLEAN	LNe	PSD	R&D		USA
DEAP	LAr	PSD	R&D SNO	LAB(CANADA)	USA
XMASS	LXe	PSD	construction		Kamioka Japan
CDMS	Ge	bolometer	running	Soudan	USA
CRESST	CaWO ₄	bolometer	running	LNGS	INFN-ITALY-Italy
EDELWEISS	Ge	bolometer	running	Frejus	France
ROSEBUD Ge,	sap,tung	bolometer	R&D	Canfranc	Spain
COUPP	F	SH droplet	R&D	Fermilab	USA
PICASSO	F	SH droplet	running+R&D	SNOLAB	CANADA
SIMPLE	F	SH droplet	running+R&D	Bas Bruit	France
Drift	CS ₂ gas	TPC	R&D	Boulby	UK
MIMAC	³ He gas	TPC	R&D		

A Sketch of design

Proper Optical Coupling

CsI(Na) •Desity 4.51 g/cm³ •Radiation length 1.85cm •Peak wave length 420 nm •decay time 630 ns

•Refractive index 1.7876

•Photon 39000 /MeV

Methylene iodide 分子量 267.87, density: $3.3254g/m^3$, Refractive index: 1.7425, Boiling point: $180 \degree$, Melting point: $5\sim6\degree$, Stability: steady MYCRO LTD.

Properties	LAr	LXe	Nal(TI)	Csl(Tl)	BGO
Density	1.4	3.1	3.67	4.51	7.1
Z(effective)	18	54	51	58	74
τ (ns)	10/1500	3/27	230	1000	300
Photo/MeV	4×10 ⁴	2.5-7.8×10 ⁴	4.3×10 ⁴	6.5×10 ⁴	2.8×10 ⁴
R index (5893Å)			1.85	1.78	2.15
λ (nm)	125	178	415	565	480

Simulation

Single Scintillator (Csl (Na)) : 30cm*10cm*10cm

Total: 9

Gap:0.2mm

PMT: cylinder

Sensitivity radius: 4.5cm

Total : 9*6=54

PMT Coverage: 63.4%

Gap: 0.1mm

Fill all of the gaps with the CH2I2.

- ✓ CH2I2 index: 1.74; attenuation length:1m;
- ✓ Wavelength range :200nm ~ 800nm.

Refractive Index

Will $n_{liquid} > n_{glass}$ efficiency of photon collection decrease.

PMT refraction

PMT response decrease while incident angle increase, While $n_{iiquid} > n_{glass}$, incident angle will increase after refraction, this effect become more important while difference of n increase.

If the n of PMT glass is at it is, light collection efficiency is fine as long as liquid refractive index nliquid> 1.4

(Refractive Index<1.4)

Optical propagation in crystal

• While $n_{liquid} < 1.3$, Critical angle less than 45 degree, light between $n_c \sim 90$ - n_c will always propagate inside square crystal.

• While $n_{liquid} > 1.5$, $n_c > 55$ degree, all light could propagate out crystal.

Other non-uniformity

• Crystal geometry +PMT incident angle effect;

While n_{liquid} is far less than n_{crystal}: for some particular angle,photon will likely reflect on the top and bottom surface of crystal, photon will centralize toward center of crystal, photon distribution will be non-uniform 。

While n_{liquid} near n_{crystal}, photon distribution will be much more uniform.

Globular will be the best shape

Non-uniformity for event at different position

- We choose several positions to check response of the detector.
- position (0,0,0) Center of detector;
 (0,10,0) Center of one side,
 (0,10,10),
 (10,10,10) 。

Single PMT response is quite non-uniform

Total response is uniform (~6%)

Couple high reflective material (tyvek) for PMT uncovered area

- Geometry : 3 X 3 crystals = (10 x 10 x 30 cm)
- No tyvek V.S 98% reflectance
- Event position: (0,0,0),(10,0,0),(10,10,0),(10,10,10)

 Monte Carlo: 20% more photon could be collected with tyvek; better uniformity could be get with high reflective material

Backgroud Shielding V.S thickness of liquid

KE=all

1KeV<KE<100KeV

cm	0	10	20	cm	0	10	20
Oil	14970	1452	442	Oil	6385	24	10
CH2I2	14320	325	29	CH2I2	4910	4	0

□Simulation events:100000

Oil density: 0.86g/cm^3; CH2I2 density:3.325g/cm^3;

□For shielding, CH2I2 is clearly better than Oil。

Design Advantage

- 1. The mass of detector could be large by piling up several crystals (~ton 60x60cm^3);
- 2. Thick enough liquid shielding can reduce outside background including PMT background;
- 3. Trigger by coincident of several PMTs could reduce PMT noise;
- 4. Main background will be radioactivity of crystal itself;
- 5. Higher reflector for PMT uncovered area;
- More photon could be possible collected by 4 π PMT coverage (compared with DAMA), lower threshold and better energy resolution would expected ;
- 7. Possible replace different crystal.

Exp. with different crystal

CsI(Na)/CsI(TI)/CaF2

- Using different crystal to measure spin dependent or spin independent property of dark matter
- Once dark matter is found, could be possible to measure the mass of dark matter by using different crystals for detection.

从外到内: 机械架,铅墙(20cm),含硼石蜡(50cm),无氧铜(10cm), 低温箱,晶体探测器.

Csl(Na)/Csl(Tl) internal background ?

n/gamma separation

Fig. 10. Quality factors for various CsI(Tl). The errors are only statistical. The present results (open markers) are compared to the data of Pécourt et al. [10] and of Gerbier et al. [19].

Fig. 11. Quality factors for various CsI(Na). The errors ape only statistical.

Xilei Sun et al

Fig. 7 A typical waveform of pure γ-ray (59.5 keVee) from Fig. 8 A typical waveform of neutron (10 keVee) from (50-60 keVee).

Fig. 10. Scatter plot of ADC2/ADC as a function of energy for γ -ray events. Only one event (in the small round circle) was seen in the region of ADC2/ADC > 0.65 and energy >20 keVee.

Radioactivity of Csl

- How much n radioactivity in Csl?
- The n/gamma separation technique can not distinguish the n background from inside of the crystal ...
- Crystal to do modulation only (?) ...

DarkSide

Augustana College – SD, USA 鱦 Black Hills State University – SD, USA 鱦 Fermilab – II, USA 鱦 IHEP – Beijing, China 鬮 INFN Laboratori Nazionali del Gran Sasso – Assergi, Italy 🌌 INFN and Università degli Studi Genova, Italy 🌃 INFN and Università degli Studi Milano, Italy 🌃 INFN and Università degli Studi Napoli, Italy 🌃 INFN and Università degli Studi Perugia, Italy 🌆 Joint Institute for Nuclear Research – Dubna, Russia 💳 Princeton University, USA 🕮 RRC Kurchatov Institute – Moscow, Russia 💳 St. Petersburg Nuclear Physics Institute – Gatchina, Russia 💳 Temple University – PA, USA 鱦 University of California, Los Angeles, USA 鱦 University of Houston, USA 鱦 University of Massachusetts at Amherst, USA 飅

The DarkSide Program

- DS-10
 - 2011
- DS-50
 - 2012
- Ton-Scale Detector: DS-Ik
 - 2014
- Ten-ton Scale Detector: DS-20k (DS-50k?)
 - 2017-9
 - Requires much deeper Lab. Jinping?

Internal background

Radioisotopes in the crystal

Fig. 5. The measured spectra of three different CsI powder samples with the HPGe detector. The peak near 665 keV is caused by gs from ¹³²Cs and ¹²⁶I.

Fig. 6. Background spectra of various crystals; A: Best crystal in the market, B: Crystal was made by careful powder selection, C: Crystal was made by powder with "pure" water, D: Crystal was made by powder with recrystallization and "pure" water, E: Crystal was made by powder with recrystallization and "ultrapure" water.

在IEEE2008年的文章中: • 左图显示了在采用pure water、 recrystallization 等办法后137Cs、87Rb 可减少,但仍存在很大 影响,由图在10keV处为 5counts/keV/day/kg,在 <10keV处是多少? - 137Cs: 1.9mBg/kg - 87Rb: <1ppb

U,Th,K

Table 2 ICP-Mass analysis of CsI(Tl) crystals (in ppb)

Element	CsI crysta				
	A	В	С	D	
Li	<1.7	<1.7	<1.7	10.6	NIM 2003
Na	1646	<120	<120	21290	11111 2003
Mg	33.5	28.3	27.4	661.6	
Al	50.5	78.6	139.8	503.5	
К	<327	<327	<327	_	
Cr	0.8	2.0	2.5	121.3	
Fe	218.3	488.0	253.4	705.8	
Rb	816.0	3.2	205.1	202.8	
Sr	< 0.08	< 0.08	< 0.08	298.9	
Ba	1052.7	1062.4	1042.7	654.4	
La	18.7	18.8	18.6	12.2	
Sm	2.2	2.3	2.5	1.3	
Lu	0.015	0.0097	0.0076	2.5	
T1	269500	554600	216400	265500	
Th	< 0.02	< 0.02	< 0.02	0.5	
U	0.05	0.0086	0.0066	< 0.002	

Table 3				
ICP-Mass	analysis	of	CsI(Tl)	crysta

NII	M 2	007
-----	-----	-----

ICP-Mass analysis of $CsI(T\ell)$ crystals (ppb)										
Element	Rb	Th		U	Tl	Li	Mg	Al	Fe	Ba
Crystal(A) Crystal(B)	12.57 2.77	<0.02 <0.02		0.038 0.08	255 600 176 600	154 55	379 269	284 2898	84 234	846 949