The PANDAX Experiment Particle AND Astroparticle Xenon Observatory

Xiang Liu Institute of Nulcear, Particle, Astronomy and Cosmology Shanghai Jiaotong Univeristy

Application of Germanium in Fundamental Physics Tsinghua University April 23-29, 2011

Outline

- Introduction to dark matter
- Direct detection
- Liquid Xenon advantages
- Two Phase advantages
- PANDAX
- Summary

Existing evidence of dark matter

Favorite candidate: WIMP

Phys. Rep. 267(1996) 195-273

Methods to search LSP

production at collider

annihilation particle detection (indirect)

nuclear recoil (direct)

Recent direct detection results

Direct detection technique

Direct detection challenge

WIMP signal: <0.1/kg day <100keV no feature

Signal collection

Background rejection

Xenon advantage

- noble gas, -100°C, easy to handle

Xenon self-shielding

Xenon light & charge

time constants depend on gas (few ns/15.4µs Ne, 10ns/1.5µs Ar, 3/27 ns Xe)

Xenon light & charge

(few ns/15.4µs Ne, 10ns/1.5µs Ar, 3/27 ns Xe)

Advantage of two-phase TPC (I)

Advantage of two-phase TPC (I)

XENON100

Advantage of two-phase TPC (II)

Excellent 3D position σ , 2mm

gamma event localized

Top PMT array

Advantage of two-phase TPC (II)

Excellent 3D position σ , 2mm

Mean-free-path MeV gamma: ~3cm MeV neutron: ~30cm

gamma/neutron, multiple hits

WIMP, single hit

Latest XENON100 results

Direct detection status

Direct detection status

Smaller σ , larger detector mass, lower bg rate.

PANDAX collaboration

Particle AND Astro-particle Xenon Observatory

Shanghai Jiaotong University Shanghai Institute of Applied Physics Shandong University Peking University, Center for High Energy physics

PANDAX in Sichuan

PANDAX shield and inner vessel

Passive shielding with Cu, Pb and PE

PANDAX: Pancake TPC with high light yield

37 R11410 PMT

PANDAX vs. Xenon100

	Xenon100	PANDAX
LXe Diameter [cm]	30	60
LXe Height [cm]	30	15
Cathode Voltage [kV]	-16	-75
Drift field [kV/cm]	0.53	5.0
Fiducial mass [kg]	40	30
S1 collection efficiency	24%(average)	57% (average)
Gamma S2/S1 rejection	99%	99.9% (expected)

Pancake advantage (I)

S1 light collection efficiency

XENON100 energy threshold: 8.7keVnr PANDAX expected : 3.6keVnr

Pancake advantage (II)

PANDAX projected sensitivity

assume:

- light yield 5.5 p.e./keV
- energy range 3-30 p.e.
- 25kg x 200 days exposure

ZERO background

PANDAX status

prototype detector

> cryogenic testing

PMT base

测量低本底材料放射性的探测器

PMT testing facility

PANDAX status

Summary

- Exciting physics on dark matter direct detection.
- Liquid Xenon Dual-Phase a promising technique.

Thank you!

backup

Detector overview

Disk-like Xenon TPC

Comparison with other Xe-based exp.

	ZEPLIN III	XENON100	XMASS	LUX	PandaX
technique	two-phase	two-phase	single-phase	two-phase	two-phase
active target mass (kg)	12	~60	~800 (100)	~300	~120

Energy Calibration: determine the energy of nuclear recoils

Achieved upper limits

Two-Phase Xenon TPC

Disk-like advantage (I)

S1 light collection efficiency ϵ

 $E_{_{NR}} = S1 / \epsilon / Fraction_E_in_scintillation$

 ϵ [↑], E threshold \downarrow , \bigcirc WIMP event rate \uparrow low-mass WIMP sensitivity \uparrow

Xenon100, 4-20p.e. S1 signal, 8.7-32.6keV $E_{_{NR}}$ PANDAX, 5keV $E_{_{FR}}$

Comparison with other Xe-based DM exp.

	ZEPLIN III	XENON100	XMASS	LUX	PandaX
active target mass (kg)	12	~60	~800 (100)	~300	~120
electron recoil rejection	99.9%	99%	0	99%	99.9%
energy threshold (keVr)	10	9	20	10	5
sensitivity at 100 GeV (cm²)	~10 ⁻⁴⁴	2 X 10 ⁻⁴⁵	1 X 10 ⁻⁴⁵	3 X 10 ⁻⁴⁶	4 X 10 ⁻⁴⁵
sensitivity at 10 GeV (cm²)	>10 ⁻⁴²	3 X 10 ⁻⁴³	> 10 ⁻⁴²	4 X 10 ⁻⁴⁴	1 X 10 ⁻⁴⁴
status	science run	science run	operation	surface testing	construction

Strong E field achievable

PANDAX Shielding

Goal set for ton-scale: external bg event in 5-15keV, ~1.1/ton year

External background

1, n/gamma from rock & concrete

材料	放射性元素含量[Bq/kg]					
	Ra226	Th232	K40			
岩石	1.8 ± 0.2	< 0.27	< 1.1			
水泥骨料	≈ 2	pprox 0.7	低于探测极限			
水泥	≈ 60	≈ 25	≈ 130			

- 2, cosmic muon and induced neutron
- 3, n/gamma from shielding material
 - 表 2, XENON100 实验屏蔽体材料的放射性元素含量,单位 mBq/kg。

材料	U238	Th232	Co60	K40	Pb210
铜	<0.07	<0.03	< 0.0045	<0.06	
内层聚乙烯	0.23±0.05	<0.094	<0.89	0.7±0.4	
铅	<0.92	<0.72	< 0.12	14±3	530±70

4, Radon

Shielding simulation results

Simulation based on Gean4.9.3 ~1.1 event in 5-15keV / ton year 0.5 from rock+concrete gamma 0.6 from Cu gamma

实验	所在地下实验室 /探测器材料	铜 (厘米)	铅 (厘米)	聚乙烯 (厘米)	屏蔽体内本底事 例率(mdru)	内部容积 (立方米)
XMASS	Kamioka / Xe	-	-	2 米水	0.1*** [6]	0.27
XENON100	LNGS / Xe	5	20	20	0.006**** [7]	0.67
LUX	DUSEL / Xe	-	-	3 米水	0.0005**** [8]	0.12
PANDAX	CJPL / Xe	>10	20	20+40	0.0002****	1.9