Neutrino [& Dark Matter Physics] with sub-keV Germanium Detectors

> Overview (Collaboration; Laboratory; Program)

Neutrino Physics Program : Highlights

R&D on sub-keV Ge Detectors

Status & Plans

Henry T. Wong /王子敬 Academia Sinica /中央研究院 March 2011 @

华大学工程物理系

Department of Engineering Physics Tsinghua University

TEXONO-CDEX Collaboration

Taiwan EXperiment On NeutrinO [since 1997]

O Neutrino Physics at Kuo-Sheng Reactor Neutrino Laboratory (KSNL)

- Taiwan (<u>AS</u>, NTHU, INER, KSNPS)
 Turkey (METU)
- **India (BHU)**

TEXONO

CDEX China Dark Matter EXperiment

[birth 2009] ╏

國聖

 Dark Matter Searches at China Jin-Ping Underground Laboratory (CJPL)
 China (THU, CIAE, NKU, SCU, EHDC)

PResearch Program: Low Energy Neutrino and Dark Matter Physics

Poineering Efforts : "Zero-Background Experiment" !* KS Expt: 1st large-scale particle physics experiment in Taiwan* TEXONO Coll. : 1st big research Coll. % Taiwan & China

16 MAY 2003 VOL 300 SCIENCE www.sciencemag.org

Taiwan-China Collaboration

A Bridge Over Troubled Waters

Researchers from Taiwan and the mainland have hit scientific pay dirt with the first and so far the only—collaboration between two institutions across the Taiwan Strait

Tokyo—A hot campaign issue in Taiwan's presidential election in March 1996 was whether the island should drop its long-held objective of reuniting with the mainland and formally declare its independence. As a

the mainland but is now a U.S. citizen. It was his idea to get Taiwanese scientists together with researchers at the Chinese Academy of Sciences' Institute of High Enarmy Physics (IHEP). That month, the two

Neutrino Physics *at (L~O)* Reactor ?? Rationale :

- Need neutrino source to do neutrino physics : reactor is a high-flux, understood and controlled source AND free as well !!
- > oscillation expts. ⇒ $m_v \neq 0$ ⇒ anomalous v properties & interactions
- > Experimental neutrino physics has been full of surprise
- Worth exploring any experimentally accessible parameter space
- May place constraints to interpretation of precision oscillation data
- Explore new neutrino sources & detection channels for future studies

Kuo Sheng Reactor Neutrino Laboratory:

plant outside Taipei.

Front View (cosmic vetos, shieldings, control room)

Configuration: Modest yet Unique

Flexible Design: Allows different detectors conf. for different physics

KS Laboratory : Detectors

ULB-HPGe [1 kg]

ULE-ULB-HPGe Prototype [20 g]

Multi-Disks Array [600 Gb]

Neutrino Properties & Interactions at Reactor

Neutrino Electromagnetic Properties : Magnetic Moments

a conceptually rich subject ; much neutrino physics & astrophysics can be explored

ν-osc. : Δm_{ν} , U_{ij} **0**νββ : m_{ν} , U_{ij} , ν_D/ν_M μ_{ν} : m_{ν} , U_{ii} , ν_D/ν_M , $\nu \otimes \gamma$

 fundamental neutrino properties & interaction ; necessary consequences of neutrino masses/ mixings ; in principle can differentiate *Dirac/Majorana neutrinos* explore roles of neutrinos in astrophysics

Magnetic Moment Searches @ KS

simple compact all-solid design : HPGe (mass 1 kg) enclosed by active NaI/CsI anti-Compton, further by passive shieldings & cosmic veto

Selection: single-event after cosmic-veto, anti-Comp., PSD

TEXONO data (571/128 days) ON/OFF) [PRL2003; PRD 2007]

 background comparable to underground CDM experiment :
 1 day⁻¹keV⁻¹kg⁻¹ (cpd)
 DAQ threshold 5 keV analysis threshold 12 keV

After-Cut Spectra

ON/OFF Residual Plot :

μ_ν(ν_e) < 7.2 X 10⁻¹¹ μ_B @ 90% CL

Direct Experiments at Reactors

Search of μ_v at low energy
⇒ high signal rate & robustness:
> μ_v>>SM [decouple irreducible bkg ⊕ unknown sources]
> T << E_v ⇒ dσ/dT depends on total φ_v flux but NOT spectral shape [flux well known : ~6 fission-v ⊕ ~1.2
²³⁸U capture-v per fission]

Neutrino-Electron Scattering Cross-Section

CsI(Tl) 200 kg : Probe Electroweak Phys. [2 X PRD10]

Electron Neutrinos @ Reactor (PRD 72, 2005)

- Evaluate v_e flux at standard reactors
- > Derive limits on μ_{ν} and Γ_{ν} for ν_{e}
- Explore v_e flux enhancement in loaded reactor (e.g. with Cr)
- Study Potential applications :
 - ♦ v_eNCC cross-section measurements,
 - 🤄 θ13
 - Pu-production monitoring

Exploration of possible Axion Emission at Reactor

A Production:

TABLE I: A summary of magnetic transitions and their estimated fluxes at a typical 3 GW power reactor.

Channel	E_{γ}	Transitions	Φ_{γ}	
	(keV)		$(fission^{-1})$	(GCi)
$^{10}\mathrm{B}(\mathrm{n},lpha)^{7}\mathrm{Li}^{*}$	478	M1 $\left(\frac{1}{2}^{-}\right) \rightarrow \left(\frac{3}{2}^{-}\right)$	0.28	0.68
$\mathrm{p}(\mathrm{n},\gamma)\mathrm{d}$	2230	Isovector M1 [°]	0.25	0.61
${}^{91}Y^{*}$	555	M4 $\left(\frac{9}{2}^+\right) \rightarrow \left(\frac{1}{2}^-\right)$	0.024	0.058
$^{97}\mathrm{Nb}^{*}$	743	M4 $\left(\frac{\tilde{1}}{2}^{-}\right) \rightarrow \left(\frac{\tilde{9}}{2}^{+}\right)$	0.055	0.13
135 Xe *	526	M4 $\left(\frac{\tilde{1}1}{2}^{-}\right) \rightarrow \left(\frac{\tilde{3}}{2}^{+}\right)$	0.0097	0.023
$^{137}\mathrm{Ba}^*$	662	M4 $\left(\frac{\tilde{11}}{2}^{-}\right) \rightarrow \left(\frac{\tilde{3}}{2}^{+}\right)$	0.0042	0.010

🚅 Detection:

PRD 75 (2007)

FIG. 1: Schematic diagrams of interactions of axions with matter, via (a) Primakoff and (b) Compton conversions.

 Improved laboratory limits on gaee for Bra>10-9
 Exclude

Exclude DFSZ/KSVZ Models for axion mass 10⁴-10⁶ eV

Current Research Theme: "sub-keV" Ge Detectors

- ⁸ Physics Goals for O[100 eV threhold⊕1 kg mass⊕1 cpkkd] detector:
 - vN coherent scattering
 - Low-mass WIMP searches
 - Improve sensitivities on neutrino magnetic moments
 - Implications on reactor operation monitoring
 - Open new detector window & detection channel available for surprises

Neutrino-Nucleus Coherent Scattering :

$$\nu$$
 + N \rightarrow ν + N

Standard Model Cross-Sections:

$$(\frac{d\sigma}{dT})_{\rm SM}^{\rm coh} = \frac{G_{\rm F}^2}{4\pi} m_{\rm N} [Z(1 - 4\sin^2\theta_{\rm W}) - N]^2 [1 - \frac{m_{\rm N}T}{2E_{\nu}^2}]$$

$$\sigma_{\rm tot} = \frac{G_{\rm F}^2 E_{\nu}^2}{4\pi} [Z(1 - 4\sin^2\theta_{\rm W}) - N]^2$$

N

a fundamental neutrino interaction never been experimentallyobserved

- > $s \propto N^2$ applicable at $E_n < 50$ MeV where $q^2r^2 < 1$
- > a sensitive *test to Stardard Model*
- important interaction/energy loss channel in astrophysics media
- a promising new detection channel for neutrinos; relative compact detectors possible (implications to *reactor monitoring*);
 & the channel for WIMP direct detection !
- > Typical Rates for Ge at KSNL :

TEXONO-CDEX : ULEGe & PCGe @ KSNL & CJPL

Latest : New CoGeNT 2010 Results (limits & allowed region) ; intense theoretical interest and speculations on low-mass WIMPS

500g PCGe - Threshold & Selection Efficiency

PSD for Surface Vs Bulk Events @ PCGe
Surface Vs Bulk events down to 2 keV
n+ "inactive layer" is not totally dead; signals finite
ACV+CRT events (neutron rich) samples do not show surface band

Typical Performance : Summary

Measurement	ULEGe	PCGe-1	PCGe-2
Detector Mass	4x5 gram	500 gram	900 gram
Pulser FWHM	~ 80 eV	~ 150 eV	~ 110 eV
Gamma Line Width	182.13 eV	266.56 eV	275.27 eV
(FWHM)	(⁵⁵ Fe @ 6.49	(Ga @ 10.37 keV)	(Ga @ 10.37 keV)
	keV)		
RT Noise RMS	~ 17.44 eV	~ 91.925 eV	~ 84.26 eV
Trigger Discriminator			
level (in Noise-RMS)	4.3 σ	3.768 σ	3.719 σ
50% Trigger Efficiency	~ 80 eV	~ 180 eV	~ 143 eV
Trigger Rate	~ 5 Hz	~ 35 Hz	35-40 Hz
DAQ Dead Time	~ 10%	30-40%	14-20%
Noise Edge	~ 200 – 300 eV	~ 500 eV	~ 400 eV
50% Selection	~ 200 eV	~ 300 eV	~ 300 eV
Efficiency			

Status and Plans

- Competitive limits at WIMP-mass < 10 GeV obtained with sub-keV Ge prototype at a shallow depth reactor laboratory KSNL, for both spin-independent and spindependent couplings
- Studies on background understanding at sub-keV range
- Data taking as KSNL with 500g/900g Point-Contact Ge
- Evolving to dedicated dark matter searches at new deep underground laboratory at Sichuan CJPL 2010.
- Prepare towards detectors at 10-kg range
- Goals : open new detection channel and detector window for neutrino and dark matter physics ; available for surprises