Daya Bay Reactor Neutrino Experiment

Jun Cao

caoj@ihep.ac.cn Institute of High Energy Physics

Tsinghua University, HPGe workshop, Mar. 24, 2011

Reactor anti-neutrino experiments have played a critical role in the 50year-long history of neutrinos.

- The first neutrino observation in 1956 by Reines and Cowan.
- Determination of the upper limit of mixing angle theta13 to sin²2θ₁₃<0.17 (Chooz, Palo Verde)
- The first observation of reactor anti-neutrino disappearance at KamLAND in 2003.

Now reactor neutrino experiments become prominent again for measuring mixing angle θ_{13} precisely.

Neutrino Oscillation

Since 1998, we believe that neutrino can oscillate. non-zero mass + mixing Neutrino Mixing: PMNS Matrix

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_{23} & \sin \theta_{23} \\ 0 & -\sin \theta_{23} & \cos \theta_{23} \end{pmatrix} \begin{pmatrix} \cos \theta_{13} & 0 & e^{-i\delta} \sin \theta_{13} \\ 0 & 1 & 0 \\ -e^{i\delta} \sin \theta_{13} & 0 & \cos \theta_{13} \end{pmatrix} \begin{pmatrix} \cos \theta_{12} & \sin \theta_{12} & 0 \\ -\sin \theta_{12} & \cos \theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Known: $|\Delta m_{32}^2|$, $\sin^2 2\theta_{23}$, Δm_{21}^2 , $\sin^2 2\theta_{12}$ Unkown: $\sin^2 2\theta_{13}$, δ_{CP} , Sign of Δm_{32}^2

Sterile Neutrino: Yes? No? Yes? Yes? ???

3

<u>Measuring $\sin^2 2\theta_{13}$ to 0.01</u>

If $\sin^2 2\theta_{13} < 0.01$, long baseline (LBL) experiments with conventional beam have little chance to determine the CP violation.

Measuring $\sin^2 2\theta_{13}$ to 0.01 will provide a roadmap for the future LBL experiments.

"We recommend, as a high priority, ..., An expeditiously deployed multi-detector reactor experiment with sensitivity to v_e disappearance down to $\sin^2 2\theta_{13} = 0.01$ " ---- APS Neutrino Study, 2004

Proposals for measuring θ_{13} **at reactors**

Daya Bay collaboration

7 Daya Bay and Ling Ao Nuclear Power Plant

Daya Bay NPP 2.9GW×2

LingAo NPP 2.9GW×2

...........

<u>Layout</u>

Far site

to LingAo cores 1615 m to Daya Bay cores 1985 m Overburden 350 m

- 3 experimental Hall connected with horizontal tunnel.
- 8 antineutrino Detectors (AD)
- Oscillation singal
 - → neutrino rate deficit
 - ➡ energy spectrum distortion

- Near-far relative measurements
 - \Rightarrow Cancel reactor errors (3%)
- Identical ADs
 - \Rightarrow Cancel detector errors (2%)
- Enough Overburden
 - ⇒ reduce cosmogenic backgrounds
 - Larger, better detector

Signal and Backgrounds in detector

Past Results

- Chooz: R=1.01±2.8%(stat) ±2.7%(syst), $sin^2 2\theta_{13} < 0.17$
- Chooz: bad Gd-LS
- Palo Verde: shallow site, large background

Improve the precision by an order

$$P_{ee} \approx 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E_v}\right) - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \left(\frac{\Delta m_{21}^2 L}{4E_v}\right)$$

¹² How to improve precision by an order?

- Large statistics (Powerful reactors, Large detector)
 - ➡ Chooz: 14 t.GW.y, statistical error 3%
 - ⇒ Double Chooz: 214, RENO: 830, Daya Bay: 4176
 - \Rightarrow Statistical error in 3 years: 0.2%
- Reduce backgrounds (Overburden, Low-background detectors)
 - ➡ Chooz, Double Chooz: 300 mwe, 大亚湾: 940 mwe
- Reduce Systematic error
 - ➡ Identical detectors, Near-far relative measurements

Uncertainties	Reactor	Detector	Backgrounds
Chooz	3%	1.7%	?
Daya Bay	0.1%	0.4%	<0.3%

Detectors

3 layers separated by Acrylic Vessels

Mineral Oil: 50cm thick, shielding radioactivity from PMT and Steel

- Water shields radioactivity and neutron
- Two layer water Cherenkov detector
- RPC
- Combined eff. 99.5%+-0.25%

14 **Prototype studies**

Motivation

- ⇒ Validate the design principle
- → Test technical details of tanks
- ⇒ Test Gd-LS
- → Test calibration and Pu-C source

Achievements

- ⇒ Energy response & MC Comparison
- Reconstruction algorithm
- ⇒ Neutron response & Pu-C source
- ➡ Effects of reflectors
- ⇒ Gd-LS

Absorption of IHEP prototype Gd-LS

¹Water detector: R&D with a prototype

- Compatibility tests of materials in water
- Established a water circulation model

 purification system design
- MC modeling for light transport & light collection

Backgrounds

- ⁹Li/⁸He (correlated background, B/S estimated to 0.3%)
 - \Rightarrow Cosmogenic long-lived isotopes, β -n cascade, mimic neutrino signal
- "Fast Neutron" background (correlated background, B/S estimated to 0.1-0.2%)
 - ⇒ Cosmic µ produce high energy neutrons. Neutron recoil signal mimic the prompt signal. Thermalized neutron form the delayed signal.
 - \Rightarrow Neutron capture on C, O, etc, emit high energy neutron.
- Occidental coincidence background (B/S estimated 1%, error 0.1%)
 - \Rightarrow Prompt signal (single rate <50 Hz)
 - ✓ Radioactivity (PMT, rock, steel tank, LS, etc)
 - ✓ Cosmogenic isotopes
 - \Rightarrow Delayed signal (<200/day)
 - \checkmark single neutron: Cosmic μ produces neutrons, without recoil signal.
 - ✓ cosmogenic long-lived isotopes (e.g. $^{12}B/^{12}N$)
 - ✓ Other events in 6-10 MeV (e.g. Michel's electron, corner-cutting muons)

Measuring He8/Li9 in-situ

Time since last muon

 $\sigma_{est} = \frac{1}{\sqrt{N}} \sqrt{(1 + \tau R_{\mu})^2 - 1}$

L.J. Wen et. al. NIM A 564 (2006) 471

3 years' data \rightarrow

0.36% error at DYB site

0.27% at LA near site

0.10% at the far site

The unknown is ⁹Li cross section. Combine DYB and LA site

Measure to 0.2%, irrelevant to B/S ratio

Measuring fast neutron in-situ

The most uncertain backgrounds. Simulation B/S ~ 0.1%. Depends on veto eff.

	DYB	LA	Far
Fast neutron (/day/module)	0.6	0.4	0.04
Fast neutron/Signal	~0.1%	~0.1%	~0.1%

Tagged fast neutrons (by detecting the parent muons) will be 50 times of untagged ones. Can be used to determine the B/S

Could be measured in-site to ~0.1%

Civil construction

- All blasting safely completed, no one exceeded vibration limit (0.007g)
- Hall 1, 4, 5 completed last year
- Hall 2 completed last month
- Hall 3 to be completed this summer

Civil construction

Detector Component Production

Stainless steel vessel

Liquid Scintillator Production

- ♦ What we need:
 ⇒ 185t Gd-LS, ~180t LS, ~320t oil
 ♦ Equipment designed,
- manufactured and tested at IHEP
- 4-ton Gd-LS test run successful: good quality up to now and aging test showing good stability
- Gd-LS production completed and stored in Hall 5
- LS production almost finished
- AD Filling will start next month

AD assembly

Two completed ADs

AD Dry-run

- Complete test of assembled ADs with final electronics, trigger and DAQ
- Results show that:
 - ➡ Both ADs are fully functional
 - Their response to LED & cosmic-rays agrees with MC expectations
 - ➡ Two ADs are identical
 - ➡ Electronics, trigger, DAQ and

RPC production & assembly

- Each module consists of 4 layers of bare chambers made of bakelite without linseed oil(BESIII-type)
- RPC bare chamber testing shows good performance
- Module assembly almost finished
- 2/3 modules shipped to Daya Bay

RPC installation

Gas system

28 Water Cerenkov detector installation

Muon Dry-run

Test of all installed PMTs

- ⇒ All PMTs and LEDs functional
- PMT performance within expectations
- ⇒ No grounding problems

³¹ Electronics, Trigger, and DAQ

- PMT readout electronics(IHEP)
 - ⇒ Fully tested during dry run
 - ⇒ Ready for Hall 1 AD & muon-veto
- RPC readout electronics(USTC)
 - ⇒ All components ready for Hall 1
 - ➡ Testing with trigger & DAQ underway
- Trigger(Tsinghua)
 - ⇒ Fully tested with FEE
- DAQ software(IHEP+many)
 - Successful integration test with FEEs, trigger and DAQ
 - Successful Online/offline integration test
 - ➡ Ready for hall 1 data taking

Schedule

• 2011 Autumn

- Daya Bay near site
 only
- 2012 Autumn
 - Full operation

Full Operation

