Study of PC-HPGe detector for dark matter search

Yulan Li CDEX collaboration

Outline

- What's a PC-HPGe detector?
- What we have done?
- Conclusion

Point-contact HPGe detector

- First developed in the late 1980s as large volume, low noise HPGe detectors
 - ~ 1 pF capacitance
 - ~ 300 eV noise threshold

- Recently "rediscovered" for neutrino detection, dark matter search, etc.
 - MAJORANA, GERDA, CoGeNT, CDEX,...

Charge Collection & Signal Induction

• Charge collection and signal induction characteristics can be used to separate single- and multi-site events

Pulse Shape

Very useful for background suppression:

•WIMP interaction is eminently single-site type.

•A large fraction of background is not.

CJPL 🚈

Application of Germanium Detector in Fundamental Research , Mar.23-30, Beijing, China 5 of 22

What We Have Done

- Laboratory set-up
- Crystal processing
- Pre-amplifier design
 - JFET based
 - CMOS based
- Cryostats design
- Simulation study

Laboratory Set-up

Clean room

• Wet Lab

• Machine-shop

Crystal Processing

• Typical Processing Technology is used (so far)

Detector Performance(1)

Research , Ivial.23-30, Deijing, China

Detector Performance(2)

Pre-amplifier Study: J-FET based

Performance: J-FET based

Resistor Feedback

Pulse-reset feedback

• For detail, please see Zhu Weibin's talk this afternoon

Performance: CMOS ASIC based

• For detail, please see Deng Zhi's talk this afternoon

Cryostat Design

- Traditional design:
 - not optimized for pointcontact configuration
- New design:
 - Point-contact probe
 - Scalable for different sizes of crystal
 - Low background material:
 - Quartz substrate for J-FET bonding

Simulation Study

Simulation: Electric Field

Simulation: Capacitance

Detector Configuration			Capacitance pF	
			By Theory Calculation	By Maxwell simulation
Planar (ϕ =5mm, H=8.5mm			1.31	1.3
Open-ended Co-axial (R _i =25mm, R _o =50mm, H=50mm)			64.18	64.5
Point- Contact Detector	Crystal Size	Point Contact Size (Depth = 1mm)		
	φ=50 mm, H=50mm	φ=1 mm		0.72
		φ=2 mm		1.11
	φ=40 mm, H=40mm	φ=1 mm		0.72
		φ=2 mm		1.11
	φ=50 mm, H=50mm	φ=1 mm		0.73
		φ=2 mm		1.13

Simulation: Depletion characteristics

Simulation: Charge Collection

Simulation: Signal Induction

20 of 22

Conclusion

- We are at the very beginning;
- Some preliminary results are achieved;
- Next step:
 - Further understanding
 - Larger size
 - Better performance
 - New processing technology
 - Passivation: Amorphous germanium sputtering
 - Amorphous-Ge R_f
 - Digital signal processing
 - Low radiation background material selection.

Ends

Many Thanks for Your Attention!!

Thanks the authors from whom I "stole" slices/pictures for this talk.

CDEX & PC-HPGe

- CDEX @ CJPL proposed to use to Point Contact HPGe detector to detect WIMP directly, because of its:
 - Low capacitance > low threshold
 - Pulse shape analysis > discrimination between SSE and MSE
 - High purity material> low background
 - Module availability > good for manufacture, test, installation, maintenance, ready for extension to larger volume
 - High density, small volume > good for shielding

