Crucible-free Crystal Pulling of Germanium

Michael Wünscher, Helge Riemann, Birgit Hallmann-Seifert, Anke Lüdge

Leibniz-Institut for Crystal Growth, Berlin/Germany

Scientific Seminar on Application of Germanium Detectors in Fundamental Research Tsinghua University, Beijing/China, March 23-30 2011

"Crystal Growth Processes Based on Capillarity", Thierry Duffar, Wiley 2010

Leibniz Institute for Crystal Growth Berlin

2

Motivation

- Features of crucible-free crystal growth:
 - Contactless (no additional impurities from crucible etc.)
 - Purification (depending on solubility of impurities)
 - low melt volume, low heat input, higher pull speed
- Esteblished methods for silicon:
 - Floating zone
 - Pedestal
 - \rightarrow as for silicon, higher purity for germanium can be expected

Floating Zone Crystal Growth

Leibniz Institute for Crystal Growth Berlin

Leibniz Gemeinschaft

Induction Coil Design

Current supplies/cooling water

"Heart" of the process

.<mark>eibniz</mark> Gemeinschaft

Silicon Process Applied for Germanium (Ø≈20mm)

• Stable at least until 26mm

- flat induction coil with 22mm hole (top surface 3°)
- Sloped phase boundary starting at Ø≈16mm
- Screw-like growth until spill out
- Tried for different pull speeds 2 and 3mm/min with same result

Key Parameters for Stabilization

- Induction coil design
 - Scaling down the FZ silicon process to a small hole (10mm)
 - Reducing main slit to 0.3mm \rightarrow symmetric heating
 - Change of lower angle
- Increased feed rod diameter $20 \rightarrow 30$ mm
- Gas cooling (increase heat losses)
 - Blowing argon of about 5-10 l/min with both 1 and 4 nozzles
 - Increased argon pressure of 3bar
 - Helium as inert gas
- Measures against spikes at the feed rod (because of Helium)
 - Additional heating with ring lamp (10% of 1.5KW)
 - Increased frequency from $2.6 \rightarrow 3.6 \text{ MHz}$
 - Mixtures of helium and argon

Striations - Phase Boundary (PB)

Sloped PB

Bulges during experiments

9

Key Parameters for Stabilization

- Induction coil design
 - Scaling down the FZ silicon process to a small hole (10mm)
 - Reducing main slit to 0.3mm \rightarrow symmetric heating
 - Change of lower angle
- Increased feed rod diameter $20 \rightarrow 30$ mm
- Gas cooling (increase heat losses)
 - Blowing argon of about 5-10 l/min with both 1 and 4 nozzles
 - Increased argon pressure of 3bar
 - Helium as inert gas(hydrogen could not be used by safety reasons)
- Measures against spikes at the melting front (because of Helium)
 - Additional heating with ring lamp (10% of 1.5KW)
 - Increased frequency from $2.6 \rightarrow 3.6 \text{ MHz}$
 - Mixtures of helium and argon

11

Cooling with Inert Gas: Helium

Comparison for a 10cm Long Cylinder

(Air Liquide, 400K, 1bar)	Argon	Helium	Hydrogen
Viscosity [kg/ms]	2.85E-5	2.29E-5	1.13E-5
Density [kg/m3]	1.2	1.49E-1	6.17E-2
Heat capacity [J/kgK]	5.97E+2	5.19E+3	1.45E+4
Heat conductivity [W/mK]	2.58E-2	2.06E-1	2.60E-1
Prandtl number	0.66	0.58	0.63
Grashof (γ=1/350K,ΔT=50K)	1.78E+6	5.92E+4	4.22E+4
Nußelt number	28.4	13.1	12.6
$\alpha [W/m^2K]$	7.3	27.0	32.8
Gain	1	3.7	4.5

Heat Radiation

	T _m [K]	emissivity	heat radiation [kW/m ²]	Si/Ge
Ge	1210	0,5	61	
Si	1685	0,5	229	3,76

• For comparison :

gas-cooling around the phase boundary

$$\Delta T \approx 900 \mathrm{K} \rightarrow q_{He} \approx 25 \mathrm{kW} / m^2$$

Crystal Growth in Helium

- until 21mm no visible screw (before: starting at 16mm)
- Reduced lateral buckling
- Spikes touch induction coil
- Slow feed rod rotation (10/0.8 min⁻¹) with two pull speeds (3.0/2.0 mm/min) → no influence on spikes

(fast motion)

15

Key Parameters for Stabilization

- Induction coil design
 - Scaling down the FZ silicon process to a small hole (10mm)
 - Reducing main slit to 0.3mm \rightarrow symmetric heating
 - Change of lower angle
- Increased feed rod diameter $20 \rightarrow 30$ mm
- Gas cooling (increase heat losses)
 - Blowing argon of about 5-10 l/min with both 1 and 4 nozzles
 - Increased argon pressure of 3bar
 - Helium as inert gas
- Measures against spikes at the feed rod (because of Helium)
 - Additional heating with ring lamp (10% of 1.5KW)
 - Increased frequency from $2.6 \rightarrow 3.6 \text{ MHz}$
 - Mixtures of helium and argon

Different Gases around Feed Rod / Crystal

Different Gases around Feed Rod / Crystal

- Spikes come and go reproducibly depending on the gas around the feed rod
- By changing the argon flow, diameter is changing as well (more argon → more melt)
- Diameter up to 35mm

Leibniz Institute for Crystal Growth Berlin

<mark>Leibniz</mark> Gemeinschaft

Change of Gas during Drop Forming

- Reversible change of drop volume (same power and position)
- Short reaction times around 30sec for 30mm feed rod
- Melting off the spikes with increased argon flow rate (mixture between gases) Spikes can be "blown away" during crystal growth

Working on Dislocation-free Crystals Op • ()r Sir 00 µm Goai to u gro Before After Dash neck 20

Conclusion

- Floating Zone for Germanium
 - Different setup compared to Si for stabilizing the growth
 - Gas cooling is important to compensate the lower radiative cooling
 - Two-gas setup to get rid of spikes
- Future
 - More tuning of parameters to get dislocation-free material
 - Investigation of increased purification
 - Gas cooling around crystal \rightarrow reduce helium content

Thank you for your attention!

Measures against Noses

Melt-off ring uses the edge effect for power concentration

- Effect too small

Combined optical heating

- Too much heating of feed rod
- \rightarrow heat build-up

(reduction of gradients)

Pedestal Crystal Growth

Melt Frozen in the Center

- Increasing crystal diameter
 - → reducing heater power
- Freezing hard to foresee

Process picture shortly before freezing

Simulation Model for Process Optimization

- Bigger feed rod better against freezing and spilling out (left)
- Stretched zone increases temperature gradient in the center (right)

Pedestal

- Material: Cz germanium
- Feed rod 50mm / crystal 15mm
- Pull speed 1mm/min
- Rotation: -6min⁻¹ / 15min⁻¹
- Seed <100> germanium
- Gas: argon 10 l/min

Simulation of the Temperature Field

- Melt surface picked from experiment
- Melt surface unsymmetric \rightarrow both sides give same results
- Simulation with model for melt surface gives slightly different results

Feed Rod Striations and Melt Point Isotherm

Lateral photovoltage scanning (LPS) \rightarrow visualization of striations

- Melt point isotherm qualitatively good (W-shape)
- Minimum a little too shallow
- Calculation at the edge too steep
- Maybe melt convection must be considered

Crystal Striations and Melt Point Isotherm

- Good agreement
- For Model: melt surface taken from experiment!!

GERDA

- Shortcut for GERmanium Detector Array
 - ⁷⁶Ge \rightarrow detection of neutrinoless double beta decay
 - Done at the LNGS (Grand Sasso National Laboratory)
- Material
 - ~50kg of enriched (3.5N) GeO₂ are available (Krasnojarsk, RU)
 - Enriched material (6N) as source from PPM Pure Metals
 - Until now depleted germanium for test
- Detector Crystal of ⁷⁶Ge
 - 3" <100> with few 10^{10} cm⁻³ net carrier concentration (at 77K)
 - 10 crystals needed with length of 70mm
 - Pulled with Czochralski method

"Mini-Cz" in FZ Puller

- Tube-like induction coil
 - 3MHz generator from FZ puller
- Coil also radiation shield
 - Reduced heat losses
- Less radiativ heating of the walls
 - Only melt, crucible and susceptor are hot

Crystal Structure Changed

- Dislocation-free crystal
 - Crystal up to 20mm
 - Dash method for necking
 - Reducing pull speed
 - After heating?
- Increasing diameter (>35mm)
 - Bigger feed rod
 - Changes of induction coil needed
- Analyzing the impurities
 - 5% Hydrogen in helium for passivation
 - Multiple zone melting?

<mark>.eibniz</mark> Gemeinschaft

Lateral photovoltage scanning (LPS)

Simulation des Temperaturfeldes

- Schmelzoberfläche aus Experiment bestimmt
- In Experiment nicht ganz symmetrische Schmelzoberfläche
- Simulation mit Modell-Oberfläche liefert unzureichende Übereinstimmung

