

Background suppression by Pulse Shape Analysis with BEGe detectors and their other features

Dušan Budjáš Max-Planck-Institut für Kernphysik, Heidelberg (now at Institut E15, Technische Universität München)

on behalf of the BEGe group of GERDA (INFN LNGS, INFN Milano Bicocca, INFN&University Padova, Universität Tübingen, Universität Zürich, Universität Dresden, INR Moscow)

Broad-Energy Germanium detector

small read-out electrode \Rightarrow low capacitance \Rightarrow low noise

BEGe: lower energy threshold (3 keV) and better energy resolution

Multi-site event discrimination by pulse-shape analysis

100

75

50

25

0

250

500

current [channel]

(a)

SSE

100

75

50

25

current [channel]

1. semi-coaxial HPGe

Hellmig, Klapdor-Kleingrothaus, NIM A 455 (2000) 638-644

2. point-contact HPGe

P.S. Barbeau, J.I. Collar , O. Tench JCAP 0709:009,2007

3. BEGe

3

MSE

Pulse shape discrimination with unsegmented detectors

Benefits of BEGe detectors:

- simple, robust & powerful MSE discrimination using a single read-out
- reduced amount of contacts, cabling & front-end electronics
 avoids additional background sources
 reduced complexity of electronic chain
- p-type detector with thick surface dead-layer (0.4 mm 1 mm)
 ⇒ more robust for naked-detector handling
 ⇒ improved protection against surface beta-induced backgrounds
- Iow energy threshold, superior energy resolution
- commercially produced
 - \Rightarrow high manufacturer expertise
 - \Rightarrow cheaper than custom-designed detectors

Drawbacks:

- difficult to achieve detector mass >1 kg (0.9 kg demonstrated)
- \blacktriangleright PSD based on signal time-structure \Rightarrow only 1D hit-separation sensitivity

Dušan Budjáš

Pulse shape discrimination with BEGe detectors

- 1. how does it work?
- 2. why does it work?
- 3. how well does it work?
- 4. will it work for $0\nu\beta\beta$?
- 5. does it work in GERDA?
- 6. how robust is it?

Pulse shape discrimination with BEGe detectors

- 1. how does it work?
- 2. why cloes it work?
- 3. how well cloes it work?
- 4. will it work for $0y\beta\beta$?
- 5. cloes it work in GERDA?
- 6. how robust is it?

BEGe PSD: How does it work

A / E \Rightarrow discrimination parameter

Dušan Budjáš

BEGe PSD: How does it work

M. Heisel, Dissertation, University of Heidelberg (2011)

Pulse shape discrimination with BEGe detectors

- 1. how cloes it work?
- 2. why does it work?
- 3. how well cloes it work?
- 4. will it work for $0y\beta\beta$?
- 5. cloes it work in GERDA?
- 6. how robust is it?

BEGe PSD: Why does it work

- signal shape independent of interaction position $\Rightarrow \sim 95\% \text{ volumetric efficiency of A/E position independence}$
- ➢ peak in current signal is narrow
 ⇒ hit separation sensitivity: <10 ns ⇒ <1.2 mm (1D) *</p>
- ➤ current amplitude can be measured accurately
 ⇒ ~0.6% A/E resolution ⇒ ~15 keV secondary hit sensitivity @ 2MeV

Dušan Budjáš * using 12·10⁻⁶ cm/s hole drift velocity [Bruyneel et al., NIM A 569 (2006) 764] 10

Pulse shape discrimination with BEGe detectors

- 1. how cloes it work?
- 2. why cloes it work?
- 3. how well does it work?
- 4. will it work for $0y\beta\beta$?
- 5. cloes it work in GERDA?
- 6. how robust is it?

BEGe PSD performance

JINST 6:P03005, 201 Budjas et al., JINST 4:P10007,2009 Agostini et al ΩŽ

12

BEGe detector in LArGe

Low background GERDA-LArGe test facility @ LNGS: Detection of coincident liquid argon scintillation light to discriminate background

Dušan Budjáš

M. Heisel, Dissertation, University of Heidelberg (2011)

slide adapted from K.T.Knöpfle

Pulse shape discrimination with BEGe detectors

- 1. how cloes it work?
- 2. why cloes it work?
- 3. how well cloes it work?
- 4. will it work for $0\nu\beta\beta$?
- 5. cloes it work in GERDA?
- 6. how robust is it?

PSD validation via coincident single-Compton scattering

- \Rightarrow double-escape peak (DEP) is a good representation of $\beta\beta$ events
- ⇒ validated our PSD calibration using DEP and Compton continuum events

Dušan Budjáš

D. Budjas et al., JINST 4:P10007,2009

15

Spatial dependence of PSD: Experiment

Collimated beam measurements to study spatial dependence of PSD

> peculiar pulses identified, occurring in ~3% of total detector volume

➢ in 97% of the volume PSD is uniform

Dušan Budjáš

D. Budjas et al., JINST 4:P10007,2009

Spatial dependence of PSD: Simulation

A/E vs. interaction position for SSE: (detector half-section)

 6% of total volume (different detector than on previous slide)

M. Agostini et al., JINST 6:P03005, 2011

Dušan Budjáš

Simulation: Validation

Dušan Budjáš

M. Agostini et al., JINST 6:P03005, 2011

Simulation: Predictions

Dušan Budjáš

includes systematic error due to finite accuracy of the simulation

19

Pulse shape discrimination with BEGe detectors

- 1. how cloes it work?
- 2. why cloes it work?
- 3. how well cloes it work?
- 4. will it work for $0y\beta\beta$?
- 5. does it work in GERDA?
- 6. how robust is it?

BEGe in GERDA

Pulse shape discrimination with BEGe detectors

- 1. how cloes it work?
- 2. why cloes it work?
- 3. how well cloes it work?
- 4. will it work for $0y\beta\beta$?
- 5. cloes it work in GERDA?
- 6. how robust is it?

BEGe PSD stability in LAr

Dušan Budjáš

Barnabé Heider et al., JINST 5:P10007, 2010

BEGe PSD in dependence on front-end bandwidth

- ➤ using recorded experimental pulse-data
- > FE bandwidth restriction simulated by applying various off-line filters

PSD on filtered pulses (DEP acceptance always fixed at 90%):

74

GERDA Phase II BEGe large-scale production test

- Ge material (21.5 kg) with the same chemical history as GERDA ^{enr}Ge used to perform a production test of GERDA Phase II BEGe detectors
- > Four Ge crystals pulled (17.7 kg total mass)
- > Five BEGe detectors manufactured, two in production, four tested

Det.	Diam. × length [mm × mm]	Mass [g]	Dead layer [mm]	FWHM @ 1.3 MeV [keV]	2.6 MeV peak PSD acc. [%]
Ref.	81 × 32	878	0.43	1.63	7.7 ± 0.4
1	74 × 33	760	0.7	1.61	6.1 ± 0.5
2	74 × 32	700	0.45	1.66	6.4 ± 0.5
3	75 × 31	730	0.5	1.6	7.4 ± 0.6
4	74 × 41	930	0.4	1.7	5.7 ± 0.5

Dušan Budjáš

Summary

Unsegmented BEGe detectors will provide excellent background rejection power for GERDA Phase II.

Confidence in BEGe PSD fully based on:

- 1. extensive experimental validation:
 - works well on 7 BEGe detectors available to GERDA
 - ➢ is stable in long-term operation in LAr
 - works in un-optimal noise environment of GERDA
 - \succ works with preamp rise-times up to 150 ns
- 2. deep understanding of the detector signals
 - spatial and energy dependence of PSD

Back-up

Dušan Budjáš

GERDA (GERmanium Detector Array)

- Search for $0\nu\beta\beta$ decay with HPGe detectors:
- 86% enrichment in ⁷⁶Ge (source = detector)
- HPGe is extremely pure (low background)
- very good energy resolution (~3 keV at $Q_{\beta\beta}$)
- existing technology, substantial expertise

Phase I:

- 18 kg existing detectors
- background:
 - <10⁻² cts/(keV · kg · y)

(10x improvement)

Phase II:

- 20 kg new detectors
- background:

<10⁻³ cts/(keV· kg· y) (100x improvement)

GERDA design

Under construction at Gran Sasso Underground Lab, Italy (3800 m w.e.)

Design focused on background reduction:

- bare HPGe detectors submersed in ultra-pure LAr
- detector anticoincidence, passive shielding and μ-veto
 Phase II: further active background suppression necessary

Ονββ decay backgrounds

Most important backgrounds:

external: ²²⁸Th and ²²⁶Ra in materials around the detectors

intrinsic: 60Co and 68Ge cosmogenically produced in detectors

 $\Rightarrow \gamma$ -ray emitters

Distinguishing single-site events (SSE) and multi-site events (MSE) required for background suppression.

 \Rightarrow detector segmentation

 \Rightarrow signal time-structure analysis

drawing

Coax vs. ppc pulse-shapes

P. S. Barbeau, J. I. Collar, O. Tench arXiv:nucl-ex/0701012v1

Weighing potential

Dušan Budjáš

Hit separation resolution

Dušan Budjáš

BEGe Pulse Shape Discrimination method

PSD calibration

Energy dependance of $A/E \rightarrow$ likely an electronic effect (observed with a pulser)

1st time bare BEGe detector in LAr

Marik Barnabé Heider BEGe in LAr: long term test 2. 2010

detector performance stable over 1 month period

Background spectrum

Background spectrum

Background analysis

Results: Stability

- measurement ongoing at LNGS underground in Ge-spectrometry lab since the beginning of May
- > preliminary analysis:

* count rate corrected for ⁶⁰Co decay