

Pulse Shape Analysis

Fabiana Cossavella

Max-Planck Institut für Physik, München

26 March 2011

OUTLINE:

- motivation
- description of the procedure
- results

Motivation: background recognition

lower background \rightarrow higher sensitivity

hardware discrimination: granularity \rightarrow segmented HPGe detectors

Motivation: background recognition

study of pulse shape details \rightarrow Pulse Shape Analysis (PSA)

- R_{90} : radius within which 90% of the energy is deposited
- photons: Compton scattering \rightarrow multiple energy deposits
- $0\nu\beta\beta$: energy deposit locally, within $\approx 1~{\rm mm}$

Pulse shape properties

Knee indicates that one kind of charge carrier reaches electrode and stops drifting

Multiple site event (MSE):

MSE tends to have more complicated pulse structures.

Pulse shape analysis procedure

- 18-fold segmented detector
- 100 kBq ²²⁸Th source facing the center of segment S
- trigger: $E_s > 1 \text{ MeV}$
- collection of SSE and MSE samples
- study of PS differences and training of PSA methods
- application of methods to the data sample to identify photon-like and electron like events

Determining SSE and MSE samples

- $E_{\gamma} = 2615$ keV (from ²⁰⁸TI)
- pair production, e^+ annihilation
- $E_{\mathrm{core}} = (1593 \pm 5) \text{ keV}$
- energy deposit on a millimeter scale

Single Compton Scattering events(SCS)

side view

- tagging photon scattered at $72^{\circ} \rightarrow E_{\gamma} = 575 \text{ keV}$
- electron recoil: $E_{\rm core}\approx 2040$ keV

Determining SSE and MSE samples

- $E_{\gamma} = 2615$ keV (from ^{208}TI)
- pair production, e^+ annihilation

•
$$E_{\rm core} = (1593 \pm 5)$$
 keV

• energy deposit on a millimeter scale

MSE

- photon from²¹²Bi: 1620 keV, multiple scattering (Γ_1 sample)
- single escape peak: 2103 keV

Likelihood method

Input parameters:

- risetime τ_{10-30}
- risetime au_{10-90}
- left-right asymmetry $\zeta = \frac{A_l A_r}{A_l + A_r}$
- δ : FWHM of the current pulse

Likelihood method

Input parameters:

- risetime τ_{10-30}
- risetime au_{10-90}
- left-right asymmetry $\zeta = \frac{A_l A_r}{A_l + A_r}$
- δ : FWHM of the current pulse

Likelihood method

Input parameters:

- risetime τ_{10-30}
- risetime au_{10-90}
- left-right asymmetry $\zeta = \frac{A_l A_r}{A_l + A_r}$
- δ: FWHM of the current pulse
- construct likelihood discriminants (D)

ANN method

- 40 bins of normalized pulses →40 input neurons
- 40 hidden neurons
- 1 output neuron (NN)
- network trained with DEP (NN=0) and Γ_1 (NN=1) samples
- 1000 iterations

Distinction between electron-like and photon-like events

- preselection of events by applying a single segment cut
- $\mathsf{D}^{\rm cut}$ (likelihood method) and $\mathsf{NN}^{\rm cut}$ (ANN method) chosen to keep 90% of the events in the DEP training samples
- DEP not pure: fraction of SSE event (X_{SSE})in DEP and Γ_1 samples estimated on MC sets by requiring R₉₀ <2 mm

Distinction between electron-like and photon-like events

- preselection of events by applying a single segment cut
- $\mathsf{D}^{\rm cut}$ (likelihood method) and $\mathsf{NN}^{\rm cut}$ (ANN method) chosen to keep 90% of the events in the DEP training samples
- DEP not pure: fraction of SSE event (X_{SSE})in DEP and Γ_1 samples estimated on MC sets by requiring R₉₀ <2 mm
- fraction of events identified as electron-like $(\pm 2\%)$:

	SSE (%) - likelihood	SSE (%) - ANN	X _{SSE}
DEP (1593 keV)	89.3	89.3	89
Γ ₁ (1620 keV)	67.1	54.1	55

Neural Network method has the best performance!

Distinction between electron-like and photon-like events

Spectrum from a ²²⁸Th source, core electrode and ANN analysis:

- single segment cut suppress by a factor \approx 3 the 1620 keV line
- further suppression by a factor 1.5 in the 1620 keV peak due to PS analysis

Training the method with SIMULATIONS

- analysis performed also with single Compton scattering data
- problem: obtaining a clean training and testing sample in data
- solution: pulse shape simulation!
- PS package now existing
- ANN analysis with clean simulated samples!
- analysis ongoing

Conclusions

- electrons and multiple scattered photons can be distinguished by the shapes of the induced pulses
- pulses read from the core electrode \rightarrow in future more information through segment pulses and mirror charges
- PS analysis based on two different methods has been tested
- methods to be trained with SSE and MSE samples as pure and homogeneous as possible \rightarrow simulations
- strong selection by the single segment cut
- Artificial Neural Network shows the best performance
- ANN suppresses by circa a factor 1.5 photon peaks surviving the single segment cut