

Neutron induced backgrounds and measurements neutron activation of ⁷⁶Ge

Peter Grabmayr

the GERDA Collaboration

Eberhard Karls Universität Tübingen Germany

bmb+f - Förderschwerpunkt

Astroteilchenphysik

Großgeräte der physikalischen Grundlagenforschung

Beijing, March 26, 2011

previous ⁷⁶Ge experiments

previous experiments: HDM (5 det) and IGEX (3 det)

Klapdor-Kleingrothaus et al. Phys Lett B586 (2004) 198

71,7 kg y

Aalseth et al. Phys Rev D65 (2002) 092007 8,9 kg y

T_{1/2}> 1,6 ·10 ²⁵ y (90%CL)

Beijing, March 26, 2011

P. Grabmayr, Kepler Center Tübingen

Higher sensitivity needs less background

nature & structural components & calibration

- understand (reduce) background contributions in laboratory LNGS 3800 m.w.e.
- production of isotopes

- neutron capture
- elastic and inelastic neutron scattering
- neutron production reactions

Beijing, March 26, 2011

(n,γ) (n,n), (n,n') (n,p),..

neutron flux in underground labs

Measurements: difficult, selective, incomplete

Measured neutron flux in several underground laboratories. 1 LNGS, P. Belli et al. [5]; 2 LNGS, A. Rindi et al., [6]; 3 LNGS, F. Arneodo et al., [7]; 4 Modane, V. Chazal et al., [11]; 5 Broken Hill, S.R. Hashemi-Nezhad ad L.S: Pearl, [13]

Beijing, March 26, 2011

GERDA select source for lines (DEP, FEP) close to $Q_{\beta\beta}$ ~4m **Parking** Position reasonable $T_{1/2}$ 1.7 m LAr Level low α – energy 3 m 4.1 m select holder for good shielding low emission prob. 5.9 m **Detector Array** select positions for optimal parking Cryostat calibration 4.2 m

F.Froborg, NIMA/PhD thesis

Beijing, March 26, 2011

calibrations

select source for lines close to $Q_{\beta\beta}$ reasonable $T_{1/2}$ low α – energy select holder for good shielding low emission prob. select positions for optimal parking calibration

F.Froborg, NIMA/PhD thesis

Beijing, March 26, 2011

7,7 MeV

calibrations

select source for lines close to $Q_{\beta\beta}$ reasonable $T_{1/2}$ low α – energy select holder for good shielding low emission prob. select positions for optimal parking calibration

F.Froborg, NIMA/PhD thesis

²²⁸Th (in Au) A = 20 kBq

Beijing, March 26, 2011

calibrations

isotopes produced per year calibration parking 10^5 10^{3} # isotopes / y # isotopes / y 10^{4} 10^{2} 10^{3} 10^1 10^{2} 10^{0}

10⁻¹ 10^{1} 10⁻² 10^{0} 10⁻³ 10 Zne7 Ar3 triton 019 Ar4 HHOOGOGG44 Ca2 40 242 33 ē 335 ģ 41**A**r 41**A**r 75,7 56 ′Ge 64 \Box F.Froborg, NIMA/PhD thesis

Beijing, March 26, 2011

neutron capture

slow neutrons: large cross section & large flux

Beijing, March 26, 2011

⁷⁶Ge experiments

 $n \ + \ ^{76}Ge \ \rightarrow \ ^{77}Ge \ + \ \gamma \ \rightarrow \ \ ^{77}As \ + \ \beta \ + \ \gamma \ \rightarrow \ \ ^{77}Se \ \ + \ \ \beta \ + \ \gamma$

Beijing, March 26, 2011

production rate: $0.5 - 1 \, {}^{77}\text{Ge/(kg y)}$ (relate to HdM : ~0,5 0v $\beta\beta$ -events/(kg y)

energy deposition around 2039 keV via β :

⁷⁷Ge: 8 x 10-5 counts/(keV decay)

(possible reduction via anti-coincidence / PSA)

^{77m}Ge: 2.1 x 10-4 counts/(keV decay)

(less reduction due to direct β g.s. Transition)

at LNGS

neutron capture

2 photon lines: 2041(prompt) & 2037 (delayed) keV close to $Q_{\beta\beta}$ = 2039keV 2 experiments: thermal (< meV, FRM-II) & astro (25 keV, FZK)

$$v = \frac{\sum E_i \sigma_i}{S_n \sigma_{tot}} = \frac{\sum E_i I_i}{S_n}$$

only 15% known

⁷⁶Ge experiments

neutron beam

~2 x 10¹⁰ n_{th}/(cm² s)
<
$$\lambda_n$$
> = 6.7 Å (cold)
< E_n > = 1.83 meV

Beijing, March 26, 2011

the detectors

GERDA

- $m \sim 300 \text{ mg} \text{ of enriched GeO}_2$
- irradiation time > 50 000 s
- 2 HPGe with Compton suppr.
- Li/Cd/Pb/PE absorbers

•7.83 x 10⁹ n/(cm² s¹) • $<\lambda_n > = 6.7 \text{ Å}$ •<E> = 1.83 meV

the spectra

• irradiation time > 50 000 s

GERDA

VS. < 0.5% enriched: ⁷⁶Ge ⁷⁴Ge ⁷³Ge ⁷⁷Ge (decay) ⁷⁵Ge (decay)

86 %

depleted: ⁷⁴Ge ⁷³Ge ⁷²Ge ⁷⁰Ge ⁷⁵Ge (decay)

more spectra: background (FEP) decay (enriched) decay (depeted)

background: F, H, N, Na, C,Cd, Al, Pb

Beijing, March 26, 2011

the spectra

• $m \sim 300 \text{ mg}$ of enriched / depleted GeO₂

86 % VS. < 0.5%

irradiation time > 50 000 s

⁷⁶Ge capture cross section

collect the prompts & check intensity of know lines

Beijing, March 26, 2011

ТВВ
GERDA

cross section [mbarn]								
σ(⁷⁷ Ge total)	σ(⁷⁷ Ge direct)	σ(^{77m} Ge)						
Seren (1947) : 85 ± 17 Pomerance (1952) : 350 ± 70 Brooksbank (1955) : 300 ± 60 Metosian (1957) : 76 ± 15 Lyon (1957) : 43 ± 2	Lyon (1957): 6±5	Metosian(1957): 87 ± 15 Lyon(1957): 137 ± 15 Wigmann(1962): 120 ± 20 Mannhart(1968): 86 ± 9						
New value (2009): 68.8 ± 3.4	46.9 ± 4.7	115 ± 16						

G. Meierhofer et al., EPJA 40 (2009) 61

Beijing, March 26, 2011

⁷⁶Ge experiments

Beijing, March 26, 2011

⁷⁴Ge experiments & results

cross section [mbarn]								
σ ⁽⁷⁵ Ge total)	σ(⁷⁵ Ge direct)	$\sigma(^{75m}Ge)$						
Seren (1947): 380 ±76								
Pomerance (1952): 600 ± 60								
	Metosian (1957): 180 ± 40	Metosian (1957): 40 ± 8						
Lyon (1960): 550 ± 55								
		Wigmann (1962): 200 ± 20						
		Mannhart (1968): 143 ± 16						
Koester (1987): 400 ± 200								
New value (2010): 497 ± 52 G. Meierhofer et al., PRC 81, 027603 (2010)	365 ± 51	130.5 ± 5.6						

relativly large uncertainties due to emission probabilities

G. Meierhofer, P.G. etal PRC81 (2010) 027603

Beijing, March 26, 2011

⁷⁶Ge isotopic composition

Ge-isotope	70	72	73	74	76		
	averaged over all samples						
Certificate	21.50	29.90	8.45	38.92	0.57		
LNGS 2	20.40	30.39	8.80	39.77	0.64		
Moscow	22.74	30.05	8.30	38.42	0.60		
Geel INAA	22.44	29.65	8.32	39.05	0.54		
Geel k0-NAA	22.44	29.65	8.32	39.06	0.53		
Tübingen	22.66	29.56	8.35	38.85	0.–		
total avera	22.03	29.87	8.42	39.02	0.58		
previous	22.8	30.1	8.31	38.3	0.60		

depleted material for test of production chain

Beijing, March 26, 2011

neutron capture

2 photon lines: 2041(prompt) & 2037 (delayed) keV close to $Q_{\beta\beta}$ 2 experiments: thermal (< meV, FRM-II) & astro (25 keV, FZK)

remaining problem

the coincidence principle

the technical details

efficiency and non-linearity G. Meierhofer

Beijing, March 26, 2011

the coincidences

energy and time difference G. Meierhofer

Beijing, March 26, 2011

the coincidences

Beijing, March 26, 2011

Beijing, March 26, 2011

first look at coincidence data

coincidence results

⁷⁶Ge

- 119 lines found (prior 17, 13 confirmed)
- 84 lines in decay schema
- $S_n = 6071,29 \pm 0,05 \text{ keV}$
- v = 65.5 % (up to now 10.6 %)

68 lines found (32 of them new)

68 lines in decay schema

 $S_n = 6505,84 \pm 0,05 \text{ keV}$

v = 53 % (up to now 30 %)

the Q_{ββ} region

Beijing, March 26, 2011

background contribution

MaGe MC Simulation by L. Pandola

GERD

line 2035 keV: 1,5 x 10^{-4} counts/(capture) 1,7 x 10^{-4} counts/(capture)

Compton: 0,55 x 10^{-4} counts/(keV capture) 0,44 x 10^{-4} counts/(keV capture)

the ⁷⁶Ge(n,p) reaction

(n,p) worse than the (n,n' γ) because of the additional β 's

Beijing, March 26, 2011

summary

finished setup by summer 2010

neutron background: calibration sources:

 $B_{\gamma} = 3.2 \times 10^{-5} \text{ counts}/(\text{keV}\cdot\text{kg}\cdot\text{y})$ $B_{n} = 3.7 \times 10^{-5} \text{ counts}/(\text{keV}\cdot\text{kg}\cdot\text{y})$

 $\begin{array}{l} \mbox{muon rejection:} \\ 97,9 \ [+1,2,-2,0] \ \% \\ B_{\mu} \ < \ 10^{-4} \ cts/(keV \ kg \ y) \end{array}$

summary

save for GERDA Phase I

manageable for Phase II

much of this background scales with target mass

new ideas in case of tonne-scale exp. to see

Beijing, March 26, 2011

summary

save for GERDA Phase I

manageable for Phase II

much of this background scales with target mass

new ideas in case of tonne-scale exp. to see

..... if he is right

normalize

relate prompt and decay intensities

to get relative intensities, and finally absolute

S

Finish