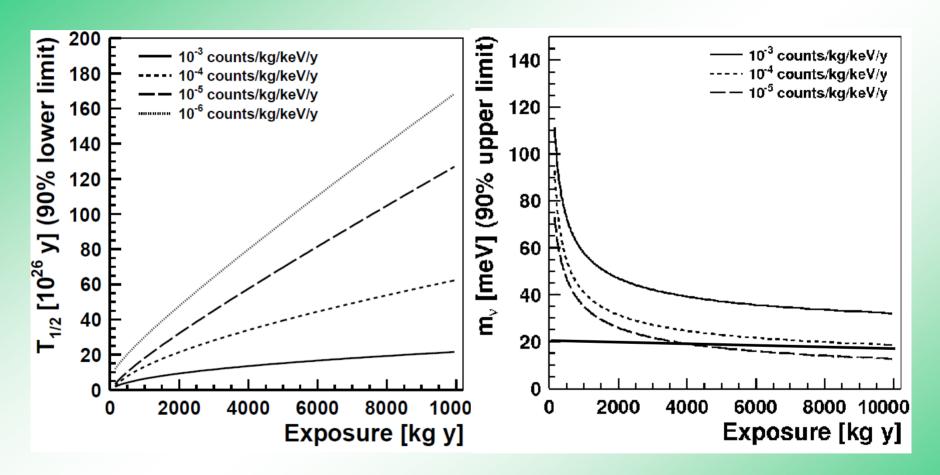


(Irreducible) Backgrounds (specific to HPGe)

Metallization


Surfaces, ⁶⁸Ge

Neutrinos, Muons, **Neutrons**

Béla Majorovits Max-Planck-Institu für Physik, München, Germany

Ton Scale Required Background:

Ton scale experiment requires background of 10⁻⁵ cts/(kg keV y)

Aluminum as background

Aluminum: used for many useful things

Béla Majorovits

4

Aluminum as background

Used to metallize HPGe detectors.

Example case:

Full metallization of HPGe type detector with 75 mm diameter and 70 mm height

2·π·3.75cm·300nm·7cm·2.7g/cm³

13.4mg

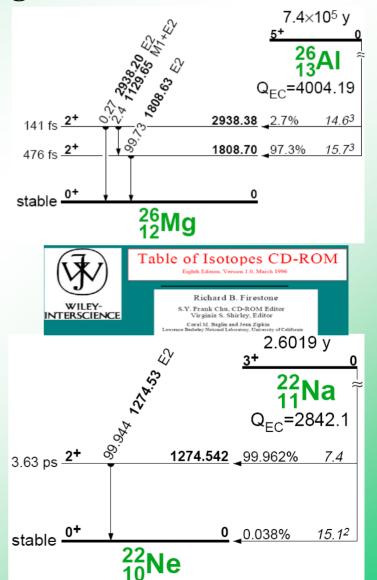
of aluminum on the outer surface

→Primordials: ²³⁸U - ²³²Th

→Cosmogenics: ²⁶Al, ²²Na

Aluminum as background

²⁶Al: β + decay,


Q-value: 4 MeV,

 $T_{1/2} = 7.4 \cdot 10^5$ years

Can not be removed easily from bulk aluminium

Can not wait for decay

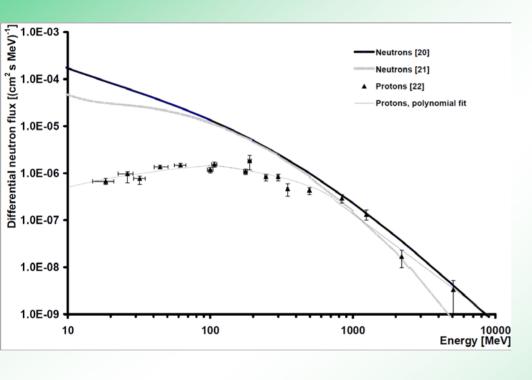
²²Na: Q-value: 2.84 MeV, T_{1/2}=2.6 years Easily produced if at sea level Can wait for decay

Aluminum as background

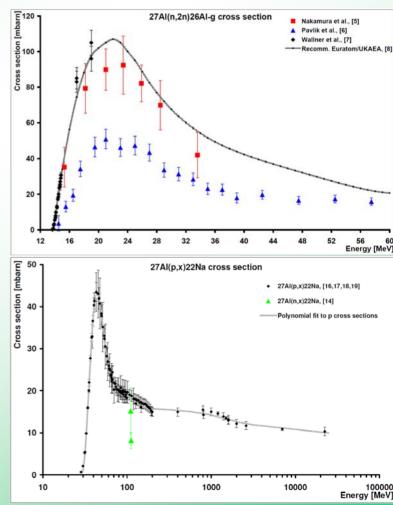
Aluminum is refined from Bauxite.

Bauxite mines:

- mainly open pits
- Top soil overburden: < 1m
- Layer thickness: 2m 4m
- **Deposits formed by weathering**
- →Rested on surface since its formation


→ Assume full exposure to cosmic rays since millions of years

Béla Majorovits



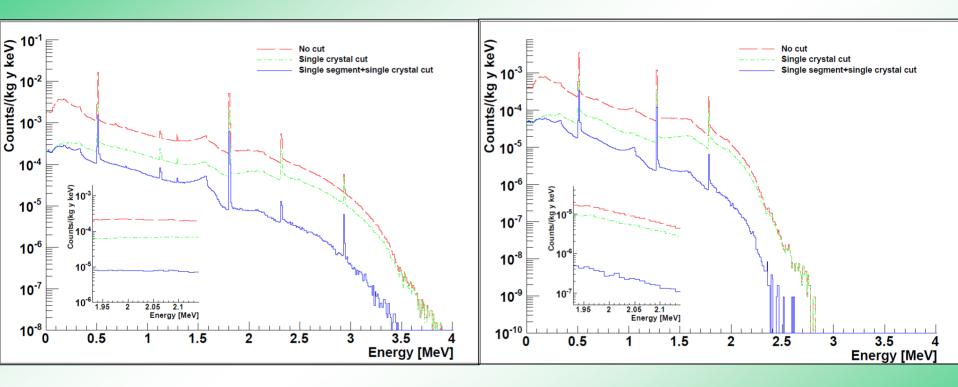
Aluminum as background

Secondary neutron and proton fluxes at sea level, New York:

Excitation functions for ²⁶Al and 22Na

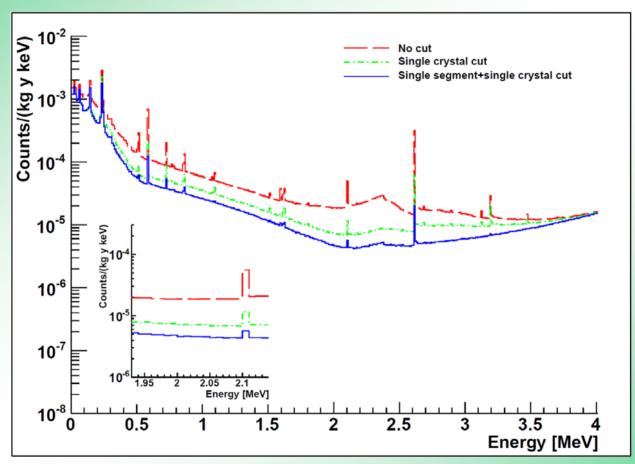

p. Ag≥ th

Aluminum as background


	²⁶ Al [(g y) ⁻¹]	²⁶ Al [mBq/kg]	²² Na [(g y) ⁻¹]	²² Na [mBq/kg]
n [Ziegler]	142	4.5	56	1.8
n [Gordon et al.]	80	2.5	43	1.3
р	17	0.5	3	0.1

Expectations from naïve calculations

MC of ²⁶Al (4.5mBq/kg) and ²²Na (0.9mBq/kg)



→Relevant background contribution for ton scale experiment even for activity ten times less than naïve expectation!

10⁻⁶ cts/(kg y keV) → Have to limit ²⁶Al activity to 0.6 mBq/kg ²²Na activity to 2mBq/kg

MC of ²²⁸Th (1mBq/kg)

10⁻⁶ cts/(kg y keV) → Have to limit ²⁶Al Activity to 0.2 mBq/kg

Measurements of ULB Aluminium: Activities in mBq/kg

Sample	^{26}Al	22 Na	226 Ra	$^{228}\mathrm{Th}$	$^{40}\mathrm{K}$
Pecheney	$0.38^{+0.19}_{-0.14}$	< 0.18	0.27 ± 0.19	1.4 ± 0.2	$1.1^{+0.2}_{-0.1}$
Pecheney	$0.2 \pm + -0.1$	< 0.32	< 0.7	$3.8 {\pm} 0.7$	4.9 ± 1.8
Kryal $\#1$	$0.6 \pm + -0.3$	0.7 ± 0.3	< 0.38	<1.9	<21
Kryal $\#2$	< 0.15	< 0.26	< 0.28	< 0.58	<22
Highpural	< 0.45	< 0.37	47 ± 5	<3.7	$<\!5.5$

²⁶Al and ²²Na found in ULB aluminum!

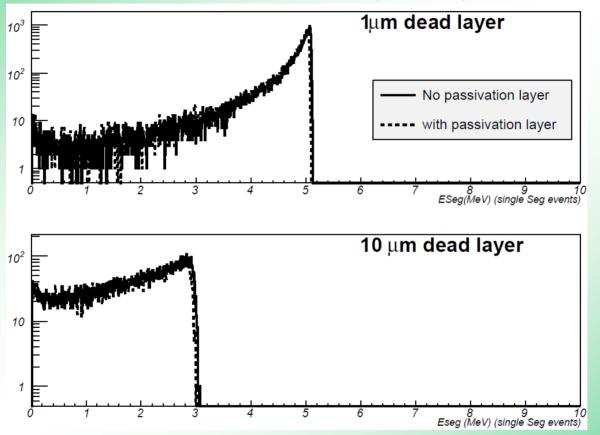
Clean Aluminum does exist!

→HPGe measurements sensitive enough to select ²⁶Al and ²²Na "free" Aluminum

Measurements of ULB Aluminium: Activities in mBq/kg

Sample	$^{26}\mathrm{Al}$	²² Na	226 Ra	$^{228}\mathrm{Th}$	$^{40}\mathrm{K}$
Pecheney	$0.38^{+0.19}_{-0.14}$	< 0.18	0.27 ± 0.19	1.4 ± 0.2	$1.1^{+0.2}_{-0.1}$
Pecheney	$0.2 \pm + -0.1$	< 0.32	< 0.7	$3.8 {\pm} 0.7$	4.9 ± 1.8
Kryal $\#1$	$0.6 \pm + -0.3$	0.7 ± 0.3	< 0.38	<1.9	<21
Kryal $\#2$	< 0.15	< 0.26	< 0.28	< 0.58	<22
Highpural	< 0.45	< 0.37	47 ± 5	<3.7	$<\!5.5$

The Good

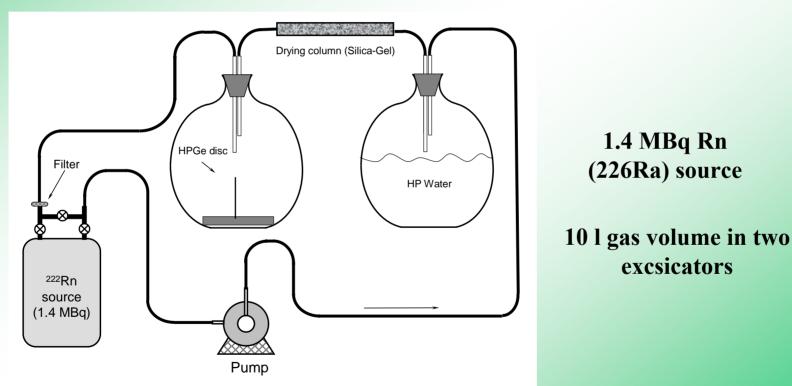


13

Contaminations on HPGe surfaces

²¹⁰Pb lead on surfaces with dead layer <20µm thickness

α contaminations (²¹⁰Pb, ²¹⁰Bi) seen in Heidelberg
Moscow, Edelweiss, CDMS, GERDA experiments.
→ Investigation of surface treatment!



Contaminations on HPGe surfaces

Effect of etching : Removal and deposition efficiencies of ²¹⁰Pb and its daughters during etching of germanium

(collaboration with G. Zuzel, MPI-K, M. Wojicik, Jagellonian Univ., Cracow and Canberra France, Lingolsheim, France):

NPGe / HPGe discs and DI water exposed to ²²²Rn source for 7 months at MPI-K in Heidelberg

Contaminations on HPGe surfaces

Clean HPGe disc etched in contaminated etching solution Contaminated disc etched in clean etching solution

Samples were etched by Canberra France-Lingolsheim according to procedure of HPGe detector etching

Contaminations on HPGe surfaces

NPGe disc:

Isotope	Initial count rate [cpm]	Count rate after cleaning [cpm]	Reduction factor R
²¹⁰ Pb	2.09 ± 0.12	Ι	-
PD	2.12 ± 0.21	< 0.02	> 106
²¹⁰ Bi	40.7 ± 1.3	Ι	_
-1°DI	46.1 ± 1.4	Ι	-
²¹⁰ Po	50.0 ± 1.5	$\boldsymbol{0.06 \pm 0.02}$	833 ± 279
	47.0 ± 1.4	0.05 ± 0.02	940 ± 377
HPGe disc:			

²¹⁰ Pb	$\boldsymbol{0.717 \pm 0.011}$	< 0.001	> 717
²¹⁰ Bi	14.70 ± 0.12	< 0.017	> 865
²¹⁰ Po	11.88 ± 0.19	0.102 ± 0.006	117 ± 7

46.5 keV gamma with HPGe det : 1% est. efficiency

β - particles with Si det:

10% est. efficiency

 α – particle with 4π Si det. system: 15% estimated efficiency

Measurements performed at Jagellonian University **Cracow by M. Wojicik**

Contaminations on HPGe surfaces

Deposition efficiencies on HPGe disc:

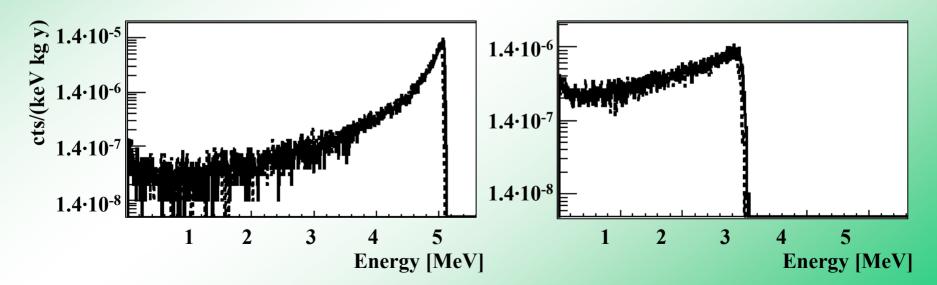
Isotope	Initial count rate [cpm]	Count rate after cleaning [cpm]	Count rate increase [cpm]	Number of nuclei on disc	Increase factor B _R
²¹⁰ Pb	0.0163 ± 0.0009	0.023 ± 0.001	0.0066 ± 0.0013	1.1.10 ⁷	1.4
²¹⁰ Bi	0.111 ± 0.006	$\boldsymbol{0.217 \pm 0.007}$	0.106 ± 0.009	7500	1.9
²¹⁰ Po	0.064 ± 0.005	$\boldsymbol{0.087 \pm 0.006}$	$\boldsymbol{0.023 \pm 0.007}$	1.7·10 ⁴	1.4

Significant amount of ²¹⁰Pb, ²¹⁰BiHPGe measurement of ²¹⁰Pb concentrationand ²¹⁰Po deposited on HPGe discof DI water (upper limit): A < 20 Bq</td>

Probability of plating onto HPGe from 100ml DI water:

 $\frac{^{210}\text{Pb:} > 1.2 \%}{^{210}\text{Bi:} > 1.2 \%}$ $\frac{^{210}\text{Bi:} > 1.2 \%}{^{210}\text{Po:} > 0.16 \%}$

Contaminations on HPGe surfaces


MC simulation: one ²¹⁰Pb nucleus on detector surface:

~10⁻⁷ cts/(kg y keV)

Allowed number of nuclei on active surface: max. 10 → 0.01 nuclei per cm²

in etchant (1.2% deposition eff.): ~850 ²¹⁰Pb nuclei ~10µBq/l!

→ ²¹⁰Pb Screening methods & Clean etchants needed

19

Contaminations on HPGe surfaces

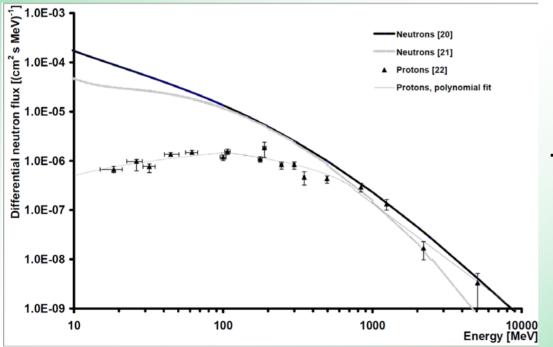
MC simulation: one ²¹⁰Pb nucleus on detector surface: ~10⁻⁷ cts/(kg y keV)

Allowed number of nuclei: max. 10 on active surface 0.01 nuclei per cm²

Allowed in etchant: ~850 ²¹⁰Pb nuclei ~1µBq!

→ ²¹⁰Pb Screening methods & Clean etchants needed

The Bad



Intrinsic HPGe contamination

Expected count rate due to ⁶⁸Ge in HPGe: One ⁶⁸Ge nucleus per kg: 1.8·10⁻⁵ cts/(kg y keV) [K. Kröninger, PhD]

→To keep the level below 10⁻⁶ cts/(kg y keV): Roughly 55 ⁶⁸Ge nuclei per tonne allowed (0.055 per kg).

Production rates :

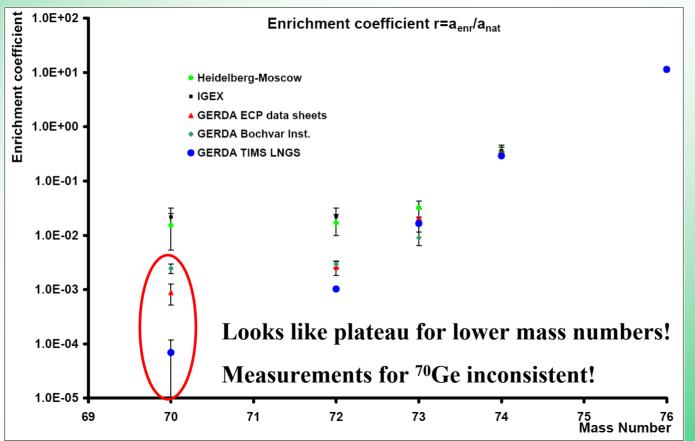
^{nat}Ge: 50 ⁶⁸Ge nuclei (kg day)⁻¹

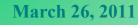
^{enr}Ge: 7 ⁶⁸Ge nuclei (kg day)⁻¹

→ Max. 11 minutes above ground!

cosmogenic production of ⁶⁰Co and ⁶⁸Ge in germanium can be avoided by storage underground.

→ Enrichment underground!




Intrinsic HPGe contamination

In equilibrium in ^{nat}Ge: 2·10⁴ ⁶⁸Ge nuclei/kg

Enrichment of germanium does deplete 68Ge content.

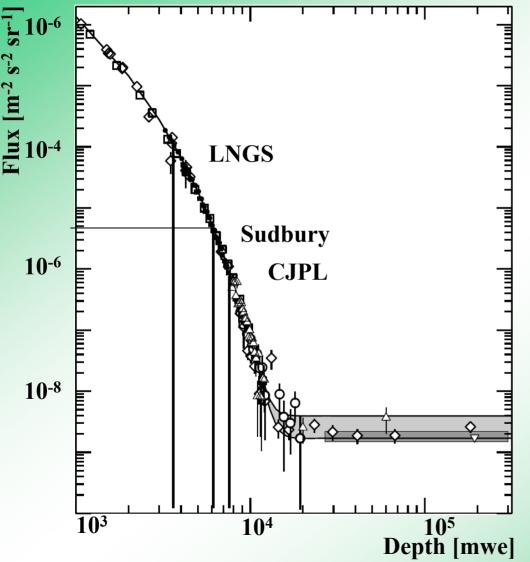
But how efficiently?

Intrinsic HPGe contamination

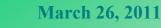
Isotope	IGEX	HdMo	GERDA I	GERDA II	GERDA TIMS	GERDA NAA
	[73]	[51]	[73]	[52]	[74]	[9]
76 Ge	10.9 ± 0.1	11.0 ± 0.4	11.2 ± 0.1	11.2 ± 0.1	11.4 ± 0.1	11.1 ± 0.1
$^{74}\mathrm{Ge}$	0.362 ± 0.001	0.356 ± 0.006	0.334 ± 0.002	0.336 ± 0.008	0.290 ± 0.001	0.358 ± 0.002
73 Ge	$(2.1 \pm 0.1) \cdot 10^{-2}$	$(3.2 \pm 1.0) \cdot 10^{-2}$	$(9.0\pm 0.1) \cdot 10^{-3}$	$(2.0\pm 0.1)\cdot 10^{-2}$	$(1.64 \pm 0.03) \cdot 10^{-2}$	
72 Ge	$(2.20 \pm 0.04) \cdot 10^{-2}$	$(1.7 \pm 0.7) \cdot 10^{-2}$	$(2.93 \pm 0.03) \cdot 10^{-3}$	$(2.6 \pm 0.8) \cdot 10^{-3}$	$(1.02 \pm 0.04) \cdot 10^{-2}$	
70 Ge	$(2.16 \pm 0.05) \cdot 10^{-2}$	$(1.5 \pm 1.0) \cdot 10^{-2}$	$(2.45 \pm 0.02) \cdot 10^{-3}$	$(8.8 \pm 3.7) \cdot 10^{-4}$	$(6.9 \pm 0.5) \cdot 10^{-5}$	

Assume (!) deenrichment of ⁶⁸Ge of 10⁻⁴ (optimistic (?) for existing technology)

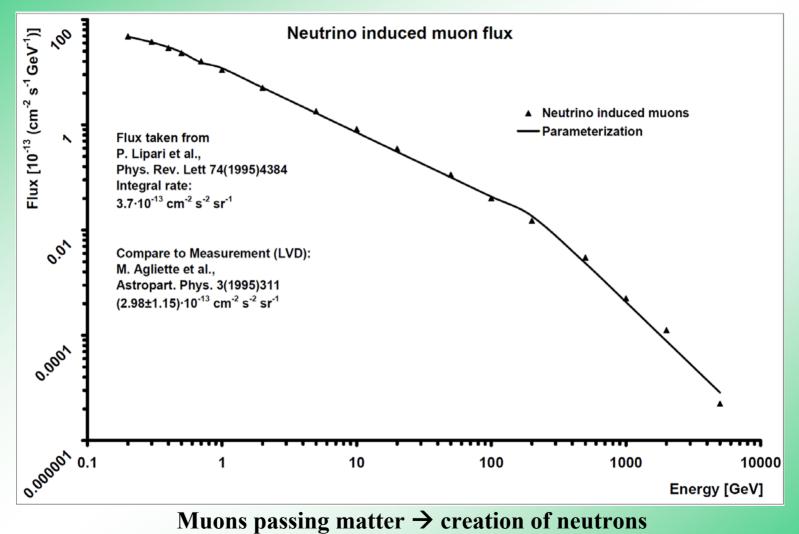
 \rightarrow Expect two nuclei per kg enriched material


→Need to wait 5.18 half lives (3.84 years) to reach 0.055 nuclei/kg limit

The Bad II



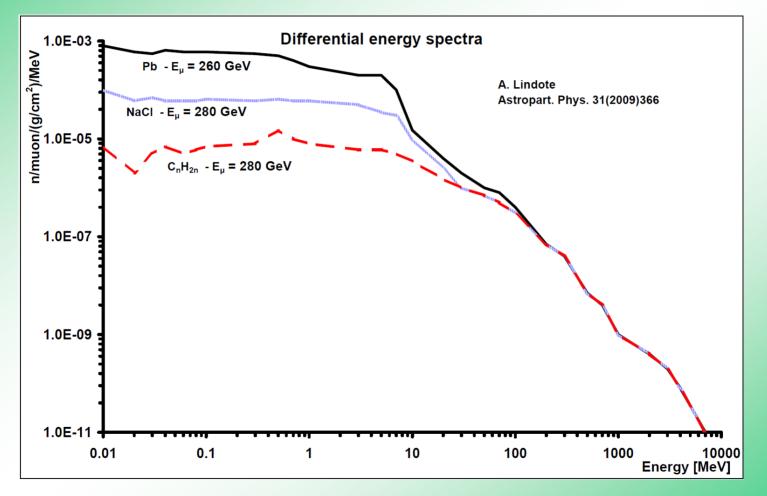
Muon flux at underground labs:

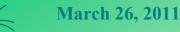

Laboratory	Depth [mwe]	Muon flux [m ⁻² y ⁻²]
LNGS	3500	2000
Sudbury	6000	150
CJPL	7500	20
Minimum	>14000	1

Going deeper does not help: Upward going muons from atmospheric neutrinos!

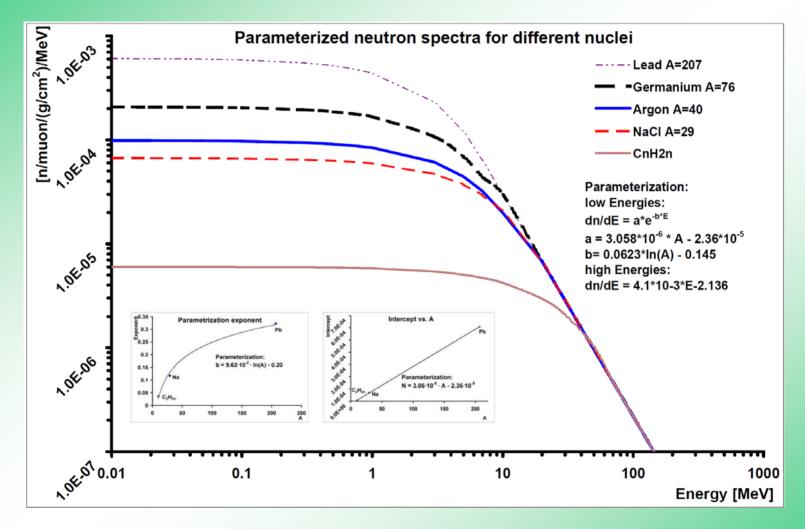
23

Assume homogeneous flux from all directions (ignore oscillations)

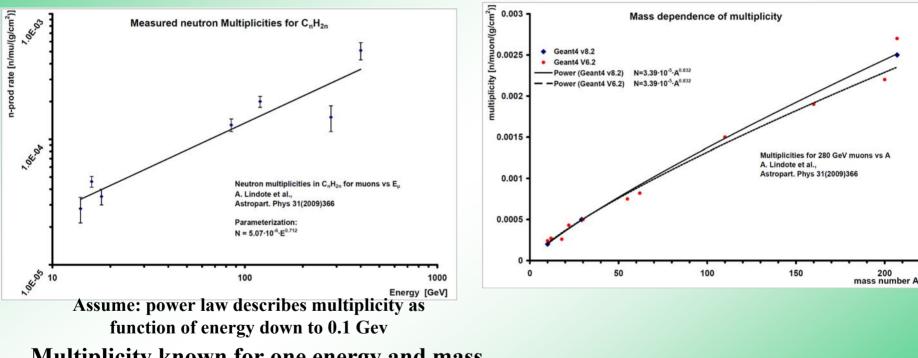



25

The real irreducible: UPWARD MUONS


Muon induced neutron spectra:

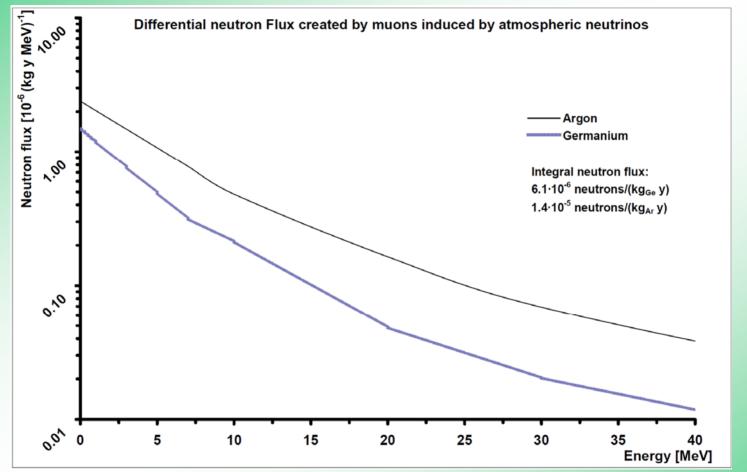
0th order assumption: Neutron spectrum independent of energy 0.1GeV – 10 TeV



If spectral form known for given mass number \rightarrow Need neutron multiplicity

Multiplicity depends on density of mass number of crossed material and on energy of initial neutron: :

Multiplicity known for one energy and mass number:


→Integrated neutron flux for given mass number by convoluting scaled multiplicity

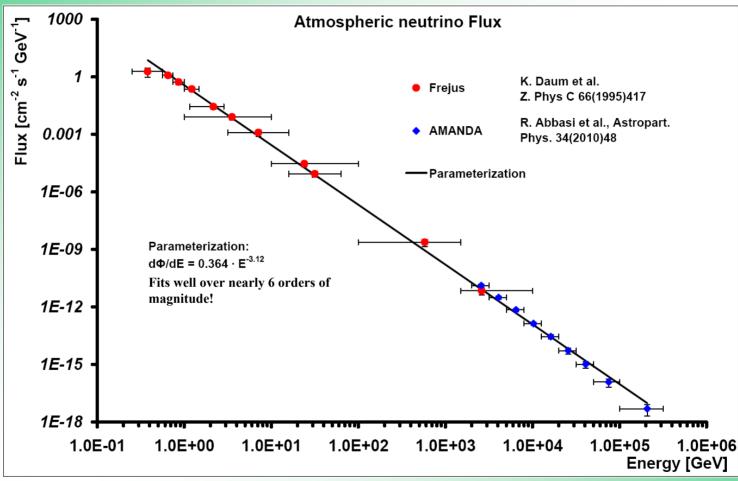
Scale to proper mass number according to parameterization

27

Muon Čerenkov veto can significantly (factor 100) reduce this contribution

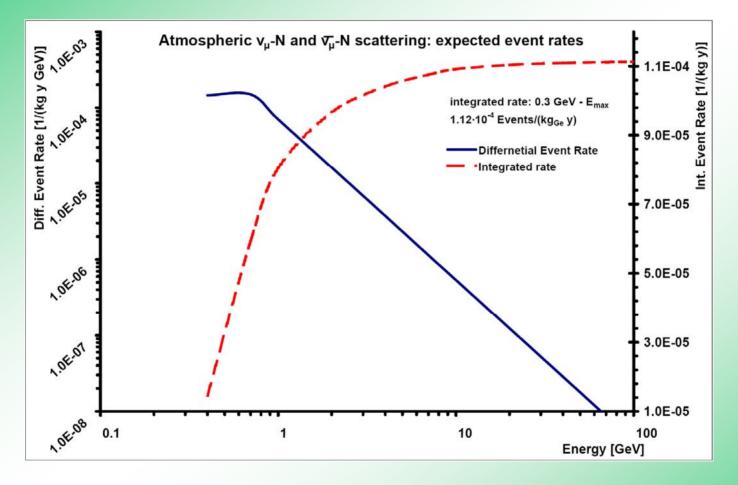
But need to consider delayed events!

→ Further investigations necessary!



The Ugly

Muon Cerenkov veto can significantly (factor 100?) reduce this contribution But need to consider delayed events!


The real irreducible: Atmospheric neutrinos

Assume: Neutrino nucleon cross section proportional to E_v from 0.3 GeV to 10 TeV Use values from PDG [Phys Rev D 45]: $\sigma_{vN} = 6.82 \cdot 10^{-39} \text{ cm}^2 \cdot \text{E}$ $\sigma_{\overline{vN}} = 3.38 \cdot 10^{-39} \text{ cm}^2 \cdot \text{E}$

The real irreducible: Atmospheric neutrinos

Expect ~ 10⁻⁴ atm. neutrino induced events per year per kg HPGe!

→ Need further investigation, how well these can be identified (high energy transfer)

The real irreducible: Atmospheric neutrinos

The Ugly II

Expect ~ 10⁻⁴ atm. neutrino induced events per year per kg HPGe! → Need further investigation, how well these can be identified (high energy transfer)

Conclusions:

The Good	Metallization:	Significant background if not taken care of. Can be controlled via HPGe screening of aluminum.
The Bad	Surfaces: ⁶⁸ Ge:	Need clean etchant. R&D for etchant screening! Depletion efficiencies have to be studied and improved!
The Ugly	Atmospheric v- induced muons Neutrinos	Irreducible after μ-veto and timing cuts. Needs investigation Irreducible after veto and timing cuts. Needs investigation